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Abstract: In this study a method is presented which aims to make an approach by using Bernstein polynomials to solutions of systems
of high order linear differential-difference equations with variable coefficients given under mixed conditions. The method converts
a given system of differential-difference equations and the conditions belonging to this system to equations that can be expressed
by matrices by using the collacation points and provides to find the unknown coefficients of approximate solutions sought in terms
of Bernstein polynomials. Different examples are presented with the purpose to show the applicability and validity of the method.
Absolute error values between exact and approximate solutions are computed. The estimated values of absolute errors are computed by
using the residual function and these estimated errors are compared with absolute errors. For all numerical computations of this study
the computer algebraic system Maple 15 is used.

1 Introduction

Differential-difference equations and systems of these class of equations are used to model various science and engineering
problems. Since solving systems of differential-difference equations analytically is hard, several numerical methods are
improved to solve these systems. We can give examples of some particular methods used for solving these systems such as
variational iteration method [16], differential transformation method [1], Adomian decomposition method [9], differential
transform method [17], linearizability criteria [10], decomposition method [4], homotopy analysis method [21], homotopy
perturbation method [12], Bessel matrix method [20], Taylor collacation Method [8].

In this study, modifying and developing methods in [2,8,13,20] and using matrix relations between Bernstein
polynomials and their derivatives, we present an approach to numerical solutions of systems of linear high-order
differential-difference equations with variable coefficients in the form

m

∑
r=0

k

∑
i=1

Pr
j,i(x)y

(r)
i (λx+β ) = f j(x), j = 1,2, · · · ,k (1)

given together with mixed conditions defined as follows

m−1

∑
j=1

an
r, j(x)y

( j)
n (a)+bn

r, j(x)y
( j)
n (b)+ cn

r, j(x)y
( j)
n (c) = λn,r, (2)

a ≤ c ≤ b, r = 0,1,2, · · · ,m−1, n = 1,2, · · · ,k

where y j represents an unknown function, Pj,i represent the known functions and f j are defined on the closed interval
[a,b] and ar, j, br, j, cr, j and λn,r are appropriate constants.
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Our main purpose is to find the approximate solutions of system given with (1) expressed in the following truncated
Bernstein series form:

yi(x) =
N

∑
n=0

yn,iBn,N(x), a ≤ x ≤ b, i = 1,2, · · · ,k (3)

where yn,i, (i = 1,2, · · · ,k, n = 0,1, · · · ,N) are the unknowns coefficients to be determined and N is any positive integer
such that N ≥ m.

2 Bernstein Polynomials

General form of the nth degree Bernstein polynomials are defined by [3] as follows:

Bi,N(x) =
(

N
i

)
xi(R− x)N−i

RN , i = 0,1, · · · ,N

where where R is the maximum range of the interval [0,R] over which the polynomials are defined to form a complete
basis. In [3] it is mentioned that there are n+1 nth degree polynomials and Bi,N(x) = 0 for i < 0 and i > N.
Bernstein polynomials can be generated by a recursive formula over an interval [0,R], so that the ith Nth degree Bernstein
polynomial can be written as

Bi,N(x) =
R− x

R
Bi,N−1(x)+

x
R

Bi−1,N−1(x)

As also it is mentioned in [3], any polynomial of degree n can be expanded in terms of a linear combination of the basis
functions:

P(x) =
i=0

∑
N

CiBi,N(x), N ≥ 1.

3 Fundamental Matrix Relations

We can convert the Bernstein series solutions yi(x) given with (3) and their derivatives y(r)i (x) in to matrix forms

yi(x) = BN(x)Ai, i = 1,2, · · · ,k (4)

and
y(r)i (x) = B(r)

N (x)Ai i = 1,2, · · · ,k (5)

where
BN(x) =

[
B0,N(x) B1,N(x) · · · BN,N(x)

]
,Ai =

[
y0,i y1,i · · · yN,i

]T
.

BN(x) can be represented as
BN(x) = X(x).B (6)

where

X(x) =
[

1 x x2 · · · xN
]T

, B =


b00 b01 · · · b0N
b10 b11 · · · b1N

...
...

. . .
...

bN0 bN1 · · · bNN

 and bi j =

{
(−1)i− j

Ri

(N
j

)(N− j
i− j

)
, i ≥ j

0, i < j
.

For the matrix representations of the derivatives of approximate solutions we need the relation between X(x) and its
derivative X (1)(x) which can be clearly seen as

X (1)(x) = X(x)D (7)

where

D =



0 1 0 0 · · · 0
0 0 2 0 · · · 0
0 0 0 3 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · N
0 0 0 0 · · · 0


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We obtain all the derivatives X (r)(x) in terms of X(x) with the help of (7) by following calculations below:

X (2)(x) = X (1)(x)D = X(x)D2

...

X (r)(x) = X (r−1)(x)D = X(x)Dr (8)

We reach similar relations between X(λx+β ) and its derivatives X (r)(λx+β ) by using (8) given as follows:

X(λx+β ) = [1 λx+β (λx+β )2 · · ·(λx+β )N ] = X(x)C(λ ,β ) (9)

X (1)(λx+β ) = X(λx+β )D = X(x)C(λ ,β )D

X (2)(λx+β ) = X(λx+β )D2 = X(x)C(λ ,β )D2

...

X (r)(λx+β ) = X(λx+β )Dr = X(x)C(λ ,β )Dr (10)

where for λ ̸= 0 and β ̸= 0 C(λ ,β ) is defined as

C(λ ,β ) =


(0

0

)
λ 0β 0

(1
0

)
λ 0β 1 · · ·

(N
0

)
λ 0β N

0
(1

1

)
λ 1β 0 · · ·

(N
1

)
λ 1β N−1

...
...

. . .
...

0 0 · · ·
(N

N

)
λ Nβ 0


and for the values λ = 1 and β = 0 defined as

C(λ ,0) =


λ 0 0 · · · 0
0 λ 1 · · · 0
...

...
. . .

...
0 0 · · · λ N


Substituting (6) into (4) we get the matrix representation of yi in (4) as

yi(x) = X(x)BAi, i = 1,2, · · · ,k (11)

Differentiating (11) consecutively with respect to x and using (8) we get the matrix expression of y(r)i in (5) as follows:

y(r)i (x) = X(x)DrBAi, i = 1,2, · · · ,k (12)

By means of (9), (10), (11) and (12) we obtain the matrix relations

y(r)i (λx+β ) = X(x)C(λ ,β )DrBAi, i = 1,2, · · · ,k (13)

Let us define the matrices

y(r)(λx+β ) =


y(r)1 (λx+β )
y(r)2 (λx+β )

...
y(r)k (λx+β )

 r = 0,1, · · · ,m (14)

which can be expressed by means of the relations given with (12) as

y(r)(λx+β ) = X∗(x)C∗(λ ,β )D̃rB̃A, r = 0,1, · · · ,m (15)

where

c⃝ 2014 BISKA Bilisim Technology



NTMSCI 2, No. 3, 220-233 (2014) / www.ntmsci.com 223

X∗(x) =


X(x) 0 · · · 0

0 X(x) · · · 0
...

...
. . .

...
0 0 · · · X(x)

, D̃r =


Dr 0 · · · 0
0 Dr · · · 0
...

...
. . .

...
0 0 · · · Dr

,

B̃ =


B 0 · · · 0
0 B · · · 0
...

...
. . .

...
0 0 · · · B

, C∗(λ ,β ) =


C(λ ,β ) 0 · · · 0

0 C(λ ,β ) · · · 0
...

...
. . .

...
0 0 · · · C(λ ,β )

 and A =
[

A1 A2 · · · Ak
]T

.

4 Method of Solution

We can express the system given with (1) in the matrix form

m

∑
r=0

Pr(x)y(r)(λx+β ) = f (x) (16)

where y(r)(λx+β ) is as the form (14), f (x) =
[

f1(x) f2(x) · · · fk(x)
]T and Pr(x) =


Pr

1,1(x) Pr
1,2(x) · · · Pr

1,k(x)
Pr

2,1(x) Pr
2,2(x) · · · Pr

2,k(x)
...

...
. . .

...
Pr

k,1(x) Pr
k,2(x) · · · Pr

k,k(x)

 . By

substituting the node points {xi|0 = x0 < x1 < · · · < xN = R, i = 0,1, · · · ,N} into the matrix equation (16) we obtain the
system of fundamental matrix equation as

m

∑
r=0

Pr(x)Y (r) = F (17)

where Pr =


Pr(x0) 0 · · · 0

0 Pr(x1) · · · 0
...

...
. . .

...
0 0 · · · Pr(xN)

 , Y (r) =


y(r)(λx0 +β )
y(r)(λx1 +β )

...
y(r)(λxN +β )


T

and f (x) =
[

f (x0) f (x1) · · · f (xN)
]T

.

Using the node points and (15) we can rewrite Y (r) in the matrix form

Y (r) = XC∗(λ ,β )D̃rB̃A, r = 0,1, · · · ,m (18)

where
X =

[
X∗(x0) X∗(x1) · · · X∗(xN)

]T
.

Substituting (18) into expression (17) we have the fundamental matrix equation{ m

∑
r=0

PrXC∗(λ ,β )D̃rB̃
}

A = F (19)

The fundamental matrix relation (19) corresponding to equation system (1) can be expressed in the following form

WA = F or [W ;F ] (20)

where

W = [Wp,q] =
m

∑
r=0

PrXC∗(λ ,β )D̃rB̃, p,q = 1,2, · · · ,k(N +1) (21)

which is a linear system of k(N + 1) algebraic equations in k(N + 1) unknown Bernstein coefficients
an,i, n = 0,1, · · · ,N, i = 1,2, · · · ,k. We can obtain the matrix representations of the conditions given with (2) by
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following a similar way used for the system (1). Writing the conditions in (2) for each n we have the following equations

m−1

∑
j=0

a1
r, jy

( j)
1 (a)+b1

r, jy
( j)
1 (b)+ c1

r, jy
( j)
1 (c) = λ1,r

m−1

∑
j=0

a2
r, jy

( j)
2 (a)+b2

r, jy
( j)
2 (b)+ c2

r, jy
( j)
2 (c) = λ2,r

...
m−1

∑
j=0

ak
r, jy

( j)
k (a)+bk

r, jy
( j)
k (b)+ ck

r, jy
( j)
k (c) = λk,r

which we can also express as

m−1

∑
j=0

A0, jy( j)(a)+B0, jy( j)(b)+C0, jy( j)(c) = λ0

m−1

∑
j=0

A1, jy( j)(a)+B1, jy( j)(b)+C1, jy( j)(c) = λ1

...
m−1

∑
j=0

Am−1, jy( j)(a)+Bm−1, jy( j)(b)+Cm−1, jy( j)(c) = λm−1

where

Ar, j =


a1

r, j 0 · · · 0
0 a2

r, j · · · 0
...

...
. . .

...
0 0 · · · ak

r, j

, Br, j =


b1

r, j 0 · · · 0
0 b2

r, j · · · 0
...

...
. . .

...
0 0 · · · bk

r, j

,

Cr, j =


c1

r, j 0 · · · 0
0 c2

r, j · · · 0
...

...
. . .

...
0 0 · · · ck

r, j

 and λr =
[

λ1,r λ2,r · · · λk,r
]T

,

for r = 0,1, · · · ,m−1 or briefly

m−1

∑
j=0

A jy( j)(a)+B jy( j)(b)+C jy( j)(c) = λ (22)

where

A j =
[

A0, j A1, j · · · Am−1, j
]T

,B j =
[

B0, j B1, j · · · Bm−1, j
]T ,

C j =
[

C0, j C1, j · · · Cm−1, j
]T and λ =

[
λ0 λ1 · · · λm−1

]T
.

By substituting λ = 1 and β = 0 in (14) and calculating this matrix at points a, b and c, we get the matrix representations
of y j(a), y j(b) and y j(c) in (22) as follows:

y( j)(a) = X∗(a)D̃ jA

y( j)(b) = X∗(b)D̃ jA

y( j)(c) = X∗(c)D̃ jA (23)
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Substituting the matrices given in (23) in the equation (22) and simplifying the result we obtain the matrix representation
of the conditions containing the coefficient matrix A as

λ =
m−1

∑
j=0

[A jX∗(a)+B jX∗(b)+C jX∗(c)]D̃ jA (24)

Defining the matrix

V =
m−1

∑
j=0

[A jX∗(a)+B jX∗(b)+C jX∗(c)]D̃ j (25)

we can write the matrix form of the conditions given with (24) as

VA = λ (26)

Finally by replacing number of mk rows of the matrix W and F with the rows of the matrix V and λ , respectively, we
obtain the unknown coefficients of the approximate solutions of the system (1). Generally for simplicity we prefer to use
the last rows of the matrices for replacement and in this we illustrate this replacement procedure as follows:

W̃A = F̃ (27)

where

W̃ =



W1,1 W1,2 · · · W1,k(N+1)
W2,1 W2,2 · · · W2,k(N+1)

...
...

...
...

Wk(N−m+1),1 Wk(N−m+1),2 · · · Wk(N−m+1),k(N+1)
V1,1 V1,2 · · · V1,k(N+1)
V2,1 V2,2 · · · V2,k(N+1)

...
...

...
...

Vkm,1 Vkm,2 · · · Vkm,k(N+1)


and F̃ =

[
f1(x0) · · · fk(x0) f1(x1) · · · fk(xN−m) λ1,0 · · · λ1,m−1 λ2,0 · · · λk,m−1

]T . If the matrix W is singular, then the
rows having the same factor or all zero are replaced. Hence A is obtained as

A = (W̃ )−1F̃ . (28)

5 Error Estimation Based on Residual Function

Researchers used the residual error estimation for residual correction [5,11], the error estimation of the Tau method for
integro-differential equations [14], error estimation of the Bessel collacation method for the multi-pantograph
equations [18], Laguerre matrix method for delay differential equations [19]. In this section we present an error
estimation based on residual function by modifying the error estimation studied in [5,11,14,18,19]. Let
ei,N(x) = yi(x)− yi,N(x), (i = 1, · · · ,k) denote the error function of approximate solution yi,N to yi, where yi is one of the
exact solutions of the problem of equation system given with (1) and (2). Hence yi,N(x) satisfies the following problem
which can be obtained by substituting the approximate solution yi,N into the problem given with (1) :

m

∑
r=0

k

∑
i=1

Pr
j,i(x)y

(r)
i,N(λx+β ) = f j(x)+R j,N(x), x ∈ [a,b], j = 1,2, · · · ,k (29)

with the mixed conditions

m−1

∑
j=1

an
r, j(x)y

( j)
n,N(a)+bn

r, j(x)y
( j)
n,N(b)+ cn

r, j(x)y
( j)
n,N(c) = λn,r, (30)

a ≤ c ≤ b, r = 0,1,2, · · · ,m−1, n = 1,2, · · · ,k
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where R j,N , (n = 1,2, · · · ,k) denote the residual functions associated with the approximate solutions y j,N . Subtracting (29)
and (30) from (1) and (2),respectively, the following error problem

m

∑
r=0

k

∑
i=1

Pr
j,i(x)e

(r)
i,N(λx+β ) =−R j,N(x), x ∈ [a,b], j = 1,2, · · · ,k (31)

with the mixed conditions

m−1

∑
j=1

an
r, j(x)e

( j)
n,N(a)+bn

r, j(x)e
( j)
n,N(b)+ cn

r, j(x)e
( j)
n,N(c) = 0, (32)

a ≤ c ≤ b, r = 0,1,2, · · · ,m−1, n = 1,2, · · · ,k

is obtained which is satisfied by the error functions ei,N , (i = 1,2, · · · ,k). Solving this error problem with the same
method given in section 4 the approximation ei,N,M to error ei,N is attained. The advantage of solving this error problem
is that the error of the approximate solution can be estimated without knowing the exact solution. In the next section we
prefer to use examples whose exact solutions are known in order to compare the exact errors with the estimated errors.

6 Numerical Examples

Example 1.Consider the following linear differential-difference equation system and the conditions given by

−xy(1)1 (x+1)+2y1(x+1)+2y2(x+1) = x+7

2y2(x+1)−3y(1)1 (x+1)−4y(2)1 (x+1) = 0
y1(1/2) = 3/4,y2(1/2) = 11/2,y1(1) = 0,y2(1) = 7

where 0 ≤ x ≤ 1. For N = 3 the nodes are x0 = 0, x1 =
1
3 , x2 =

2
3 , x4 = 1. Fundamental matrix equation of the problem is

{P0XC∗(1,1)B̃+P1XC∗(1,1)D̃B̃+P2XC∗(1,1)D̃2B̃}A = F

where

P0 =



2 1 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 2 1 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 2 1 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 2


,P1 =



0 0 0 0 0 0 0 0
−3 0 0 0 0 0 0 0
0 0 − 1

3 0 0 0 0 0
0 0 −3 0 0 0 0 0
0 0 0 0 − 2

3 0 0 0
0 0 0 0 −3 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 −3 0


,

P2 =



0 0 0 0 0 0 0 0
−4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −4 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −4 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −4 0


, X =



1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
1 1

3
1
9

1
27 0 0 0 0

0 0 0 0 1 1
3

1
9

1
27

1 2
3

4
9

8
27 0 0 0 0

0 0 0 0 1 2
3

4
9

8
27

1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1


,
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B̃ =



1 0 0 0 0 0 0 0
−3 3 0 0 0 0 0 0
3 −6 3 0 0 0 0 0
−1 3 −3 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 −3 3 0 0
0 0 0 0 3 −6 3 0
0 0 0 0 −1 3 −3 1


, C∗(1,1) =



1 1 1 1 0 0 0 0
0 1 2 3 0 0 0 0
0 0 1 3 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 0 1 2 3
0 0 0 0 0 0 1 3
0 0 0 0 0 0 0 1


,

D̃ =



0 1 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 3 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 3
0 0 0 0 0 0 0 0

,


,F =



7
0
22
3
0
23
3
0
23
3
0


,A =

[
A1
A2

]
,

A1 =

 y0,1
y1,1
y2,1
y3,1

 ,A2 =

 y0,2
y1,2
y2,2
y3,2

.

Using the above matrices we obtain the matrix W defined with (21) as

W =



0 0 0 2 0 0 0 1
0 −24 57 −33 0 0 0 2
1
27

−1
9

−8
9

80
27

−1
27

4
9

−16
9

64
27

9 −57 96 −48 − 2
27

8
9 − 32

9
128
27

8
27 − 8

9 − 10
9

100
27 − 8

27
20
9 − 50

9
125
27

20 −96 141 65 − 16
27

40
9 − 100

9
250
27

1 −3 0 1 4 6 −12 8
33 −141 192 −84 −2 12 −24 16


.

From (24), (25) and (26) matrix representation of the given conditions are obtained as

V =


1
8

3
8

3
8

1
8 0 0 0 0

0 0 0 0 1
8

3
8

3
8

1
8

0 0 −3 3 1
8

3
8

3
8

1
8

0 0 0 0 0 0 −3 3

 ,λ =


− 3

4
11
2
0
7

 ,VA = λ .

By performing the row replacement we obtain the matrices W̃ and F̃ in (27) as follows:

W̃ =


0 0 0 2 0 0 0 1
0 −24 57 −33 0 0 0 2
1
8

3
8

3
8

1
8 0 0 0 0

0 0 0 0 1
8

3
8

3
8

1
8

0 0 −3 3 1
8

3
8

3
8

1
8

0 0 0 0 0 0 −3 3

 , F̃ =



7
0
22
3

− 3
4

11
2
0
7


.

By using (28), the unknown coefficient matrix A is obtained as

A =
[
−1 −1 − 2

3 0 4 5 6 7
]T

.

Hence substituting appropriate coefficients in (4) we obtain the approximate solutions as

y1(x) = x2 −1, y2(x) = 3x+1.

which are the same as exact solutions.
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Example 2.( [8], [17], [20]) Consider the following linear differential system and the condition given with:

y(1)1 (x)+ y(1)2 (x)+ y1(x)+ y2(x) = 1

y(1)2 (x)−2y1(x)− y2(x) = 0
y1(0) = 0,y2(0) = 1

where 0 ≤ x ≤ 1. Exact solutions of this system are y1(x) = e−x −1 and y2(x) = 2− e−x. For this example we can align
the basic values of the problem as k = 2,m = 1, λ = 1, β = 0, f1(x) = 1, f2(x) = 0,
P0

1,1 = 1, P0
1,2 = 1, P0

2,1 =−2,P0
2,2 =−1,P1

1,1 = 1,P1
1,2 = 1,P1

2,1 = 0,P1
2,2 = 1. Fundamental matrix equation of the problem

is
{P0XC∗(1,0)B̃+P1XC∗(1,0)D̃B̃}A = F

Following the method given in section 4 we obtain the approximate solutions for i = 1,2 and N = 6,8,10 as

y1,6(x) =−t +0.49999287763359t2 −0.1665992415988t3 +(0.414094305449e−1)t4

− (0.78459973259e−2)t5 +(0.92305849257e−3)t6 ,

y2,6(x) = 1+1.00000000000002t −0.4999928776345t2 +0.1665992416052t3

− (0.414094305609e−1)t4 +(0.78459973420e−2)t5 − (0.92305849852e−3)t6,

y1,8(x) =−t +0.49999998063417t2 −0.1666663924244t3 +(0.416649836193e−1)t4

− (0.8327671049e−2)t5 +(0.13776655847e−2)t6 − (0.1852302697e−3)t7

+(0.16106411517e−4)t8 ,

y2,8(x) = 1+ t −0.4999999806306t2 +0.1666663923794t3 − (0.416649833725e−1)t4

+(0.8327670334e−2)t5 − (0.13776644215e−2)t6 +(0.1852292920e−3)t7

− (0.1610607624e−4)t8 ,

y1,10(x) =−t +0.4999999999679721464t2 −0.166666666051952172t3

+(0.41666661337852444e−1)t4 − (0.833330671871991e−2)t5 +(0.138880521754404e−2)t6

− (0.1982411886115e−3)t7 +(0.245716339029e−4)t8 − (0.2559545198236e−5)t9

+(0.17652035850008e−6)t10 ,

y2,10(x) = 1+ t −0.499999999967972145t2 +0.16666666605195216t3

− (0.4166666133785242e−1)t4 +(0.83333067187197e−2)t5 − (0.13888052175437e−2)t6

+(0.1982411886110e−3)t7 − (0.24571633902642e−4)t8 +(0.25595451979e−5)t9

− (0.1765203584601e−6)t10 .

Comparison of absolute error values with the ones in [8], [17] and [20] are given in tables 1 and 3. As seen from the
tables we obtain better results rather than Transform method [17] and we obtain very similar results to Bessel Method [20]
and Taylor method [8] results. The estimated errors for the error functions e1,6 and e2,6 are given in tables 2 and 4 from
which we can see that our estimations are very close to exact errors. In Figure 1 graphs of the error functions e1,N and
e2,N for the values N = 6,8,10 are given. It is clearly seen from these graphs that errors are decreasing as the value of N
increases.
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Table 1: Numerical results of absolute error function e1,6 of Example 2
xi Transform Method [17] Bessel Method [20] Taylor Method [8] Present Method
0 0 0 0 0

0.2 1.5575e-002 2.8460e-008 2.845945e-008 2.845996e-008
0.4 5.1209e-002 1.7820e-008 1.782165e-008 1.781967e-008
0.6 1.0150e-001 1.2668e-008 1.267680e-008 1.266769e-008
0.8 1.6630e-001 3.3538e-008 3.356743e-008 3.353739e-008
1 2.3351e-001 6.8657e-007 6.865716e-007 6.86574918e-007

Table 2: Comparison of numerical results of absolute error function e1,6 and estimated error functions e1,N,M for M =
8,10,12 of Example 2

xi e1,6 e1,6,8 e1,6,10 e1,6,12
0 0 0 0 0

0.2 2.845996e-008 2.84279073056582e-008 2.84599272455068e-008 2.84599575591665e-008
0.4 1.781967e-008 1.77919244485051e-008 1.78196446634016e-008 1.78196702909098e-008
0.6 1.266769e-008 1.2643882723471e-008 1.26676677388808e-008 1.26676884155990e-008
0.8 3.353739e-008 3.351717499016e-008 3.35373810636526e-008 3.35373931840587e-008
1 6.86574918e-007 6.852371508769e-007 6.86573211575897e-007 6.86574916204103e-007

Table 3: Numerical results of absolute error function e2,6 of Example 2
xi Transform Method [17] Bessel Method [20] Taylor Method [8] Present Method
0 0 0 0 0

0.2 2.3262e-003 2.8460e-008 2.84595e-008 2.8459957e-008
0.4 1.6867e-002 1.7820e-008 1.782165e-008 1.7819678e-008
0.6 5.4499e-002 1.2668e-008 1.26768e-008 1.2667692e-008
0.8 1.3194e-001 3.3538e-008 3.35675e-008 3.3537418e-008
1 2.8038e-001 6.8657e-007 6.865717e-007 6.86574798e-007

Table 4: Comparison of numerical results of absolute error function e2,6 and estimated error functions e1,N,M for M =
8,10,12 of Example 2

xi e2,6 e2,6,8 e2,6,10 e2,6,12
0 0 0 0 0

0.2 2.8459957e-008 2.84279054342991e-008 2.84599253741479e-008 2.84599556878058e-008
0.4 1.7819678e-008 1.77919322974740e-008 1.78196525123913e-008 1.78196781398054e-008
0.6 1.2667692e-008 1.2643887269948e-008 1.26676722855722e-008 1.26676929615788e-008
0.8 3.3537418e-008 3.351720103513e-008 3.35374071096589e-008 3.35374192277675e-008
1 6.86574798e-007 6.852370308781e-007 6.86573091574497e-007 6.86574796213403e-007
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Fig. 1: Graphs of absolute error functions e1,N and e2,N for values N = 6,8,10 of Example 2

Example 3.( [2], [6], [8], [20]) Consider the following linear differential system and the condition given with:

y(1)1 (x)+ y(1)2 (x)+ y2(x) = x− e−x

y(1)1 (x)+4y(1)2 (x)+ y1(x) = 1+2e−x

y1(0) = 1,y2(0) = 0

where 0 ≤ x ≤ 1. Exact solutions of this system are y1(x) = e−x+3e−x/3−3 and y2(x) =−(1/2)e−x+(3/2)e−x/3−1+x.
Fundamental matrix equation of the problem is

{P0XC∗(1,0)B̃+P1XC∗(1,0)D̃B̃}A = F

Following the method given in section 4 we obtain the approximate solutions for i = 1,2 and N = 5,7,10 as

y1,5(x) = 1−2t +0.6665429600045t2 −0.1843402224992t3 +(0.409518052792e−1)t4

− (0.569482927692e−2)t5 ,

y2,5(x) = t −0.16660539022198t2 +(0.736556629852e−1)t3 − (0.189435481094e−1)t4

+(0.275727613671e−2)t5 ,

y1,7(x) = 1−2t +0.6666662244872t2 −0.18518020404123t3 +(0.431857423289e−1)t4

− (0.837418910669e−2)t5 +(0.13056961684e−2)t6 − (0.129930152198e−3)t7,

y2,7(x) = t −0.16666644581866t2 +(0.740715862927e−1)t3 − (0.200496748775e−1)t4

+(0.40842486361e−2)t5 − (0.64718137131e−3)t6 +(0.64728997204e−4)t7,
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y1,10(x) = 1−2t +0.666666666631961166t2 −0.185185184538034076t3

+(0.43209871008221091e−1)t4 − (0.843618659713503e−2)t5 +(0.139451895946467e−2)t6

− (0.1985105812431389e−3)t7 +(0.24580409370444e−4)t8 − (0.255863683414e−5)t9

+(0.17623855808795e−6)t10,

y2,10(x) = t −0.1666666666493146472t2 +(0.74074073750512379e−1)t3

− (0.20061725627686513e−1)t4 +(0.411521264072175e−2)t5 − (0.69154388943591e−3)t6

+(0.989831232911e−4)t7 − (0.1227886913003e−4)t8 +(0.1278902468183e−5)t9

− (0.8810722289409e−7)t10 .

Comparison of absolute error values with the ones in [2], [6] and [20] are given in tables 5 and 7. We see from these
tables that results obtained with present method are better rather than Chebyshev method [2], Stehfest method [6] and
they are very close with Bessel Method [20] results. The estimated errors for the error functions e1,6 and e2,6 are given in
tables 6 and 8 from which we can see that our estimations are very close to exact errors. In Figure 2 graphs of the error
functions e1,N and e2,N for the values N = 5,7,10 are given. It is clearly seen from these graphs that errors are decreasing
as the value of N increases.

Table 5: Numerical results of absolute error function e1,5 of Example 3
xi Chebyshev Method [2] Stehfest Method [6] Bessel Method [20] Present Method

0.1 4.510522e-005 6.7614e-005 5.9187e-007 5.9187220e-007
0.2 7.985043e-005 8.4949e-005 1.0110e-006 1.01100956e-006
0.5 9.719089e-005 3.18972e-003 1.0978e-006 1.09778070e-006
0.8 8.006002e-005 5.20283e-003 9.0094e-007 9.0094297e-007
1 1.067677e-004 1.193776e-002 1.3659e-005 1.365938523e-005

Table 6: Comparison of numerical results of absolute error function e1,5 and estimated error functions e1,N,M for M =
8,10,12 of Example 3

xi e1,5 e1,5,8 e1,5,10 e1,5,12
0.1 5.9187220e-007 5.91822648308304e-007 5.91872145817983e-007 5.91872196460526e-007
0.2 1.01100956e-006 1.01096027100425e-006 1.01100952299922e-006 1.01100957076403e-006
0.5 1.09778070e-006 1.09771587207109e-006 1.09778063704070e-006 1.09778070501075e-006
0.8 9.0094297e-007 9.0085173517667e-007 9.00942894065060e-007 9.00942980477876e-007
1 1.365938523e-005 1.36605388297924e-005 1.36593867114888e-005 1.36593852717651e-005

Table 7: Numerical results of absolute error function e2,5 of Example 3
xi Chebyshev Method [2] Stehfest Method [6] Bessel Method [20] Present Method

0.1 2.247723e-005 8.4086e-006 2.9327e-007 2.9327369e-007
0.2 3.984701e-005 1.9575e-005 5.0134e-007 5.0133795e-007
0.5 4.890662e-005 2.242e-004 5.4596e-007 5.4596049e-007
0.8 4.064222e-005 4.647e-004 4.5116e-007 4.5115686e-007
1 5.390356e-005 4.710e-004 6.7555e-006 6.755515571e-006
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Table 8: Comparison of numerical results of absolute error function e2,5 and estimated error functions e1,N,M for M =
8,10,12 of Example 3

xi e2,5 e2,5,8 e2,5,10 e2,5,12
0.1 2.9327369e-007 2.93248921695193e-007 2.93273661159323e-007 2.93273687831747e-007
0.2 5.0133795e-007 5.01313313249189e-007 5.01337931456269e-007 5.01337956360630e-007
0.5 5.4596049e-007 5.45928075723713e-007 5.45960451215797e-007 5.45960486276556e-007
0.8 4.5115686e-007 4.5111124446184e-007 4.51156817203302e-007 4.51156861406332e-007
1 6.755515571e-006 6.75609209698840e-006 6.75551629128592e-006 6.75551564509039e-006

Fig. 2: Graphs of absolute error functions e1,N and e2,N for values N = 5,7,10 of Example 3

7 Conclusions

As many kind of problems in applied mathematics are difficult to solve analytically, systems of high-order linear
differential-difference equations are so. Because of this issue numerical approaches to solutions of these problem kind
are frequently preferred. We choose to use Bernstein polynomials for making an approach to solutions of systems of
high-order linear differential-difference equations with variable coefficients under mixed conditions by using nodes
which are also called collacation points and converting the problem and the conditions into matrix forms. In some studies
because of using collacation points these kind of methods are called as collacation methods as in [8]. Comparing the
results in tables 1, 3, 5 and 7, we see that present method brings better results rather than Transform method [17],
Chebyshev method [2] and Stehfest method [6] and have very close results with Bessel Method [20] and Taylor
method [8]. From the figures 1 and 2 we also see that as N increases the absolute error values are decreasing. All these
shows that our method is efficient and effective. In addition to solving the problem (1) given with the mixed conditions
(2), we used residual error function in order to estimate the absolute errors and as seen from the tables 2, 4, 6 and 8
error estimation are very close real absolute errors. This part of our study is important for the approximating the results
of the problems whose exact solution are unknown. An advantage of the method is that obtaining approximate solutions
easy and fast by using Maple 15 algebraic computer program. The method can be developed to solve other problem types
such as systems of linear integral and integro differential-difference equations by making required modifications.
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