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1 Introduction

The craze to the theory of copulas has grown over the past three decades, an ample progress especially with applications
in the field of finance: multiple credit risk assessment of structured credit products, replicating the performance of hedge
funds, risk measurement multiple market management wallet. Indeed, risk management, evaluation of asset returns, the
extreme value theory require modeling of dependence and copula theory is more attractive to finance, it allows to
accommodate non-normality of the variables. The copulas are all-powerful mathematical tools to better understand the
joint behavior of the markets in which we invest.

The concept of copula was introduced by Abe Sklar in 1959 as a solution to a problem probability statement by Maurice
Fréchet in the context of random metric spaces (works with Berthold Schweizer). This concept has long been used very
little in statistics; nevertheless, there may be mentioned: Work Kimeldorf and Sampson dependence (1975) and Research
Paul Deheuvels (late 70s). The systematic study of copulas begins in the mid-1980s with Christian Genest and his team.
The seminal article is: Genest & MacKay (1986). The joy of copulas: Bivariate distributions with uniform marginals.
The American Statistician, 40, 280-283. Since then, many statistical developments were led by Genest et al.

The main idea of the theory of copulas is to separate the joint distributions, margins and their dependency structures.
These functions are simply functions distribution dimension any whose marginal distributions are uniform on [0,1].

Nonparametric estimators of copula densities have been suggested by Gijbels and Mielnicsuk [14] and Fermanian and
Scaillet [11], who used kernel methods, Sancetta [21] and Sancetta and Satchell [22], who used techniques based on
Bernstein polynomials. Biau and Wegkamp[3] proposed estimating the copula density through a minimum distance
criterion. Faugeras [8] in his thesis studied the quantile copula approach to conditional density estimation. Recently
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Bennafla et al.[2] studied study the convergence Almost surely and in Probability (with rate) of regression model via
copula function approach.

The objective of this work is devoted to the recursive estimation of the regression model by the transformed copula; At
first, we introduce the model, and then we build our recursive estimators, after that we make some notations and
assumptions of regularity for our main result contained in the last part of this article.

2 The model

Let ((Xi;Yi), i = 1, . . . ,n) be an independent identically distributed sample from real-valued random variables (X ,Y )
sitting on a given probability space. For predicting the response Y of the input variable X at a given location x, it is of
great interest to estimate not only the conditional mean or regression function E(Y |X = x), but the full conditional
density f (y|x). Indeed, estimating the conditional density is much more informative, since it allows not only to
recalculate from the density the conditional expected value E(Y |X), but also many other characteristics of the
distribution such as the conditional variance.

A natural approach to estimate the conditional density f (y/x) of Y given X = x would be to exploit the identity

f (y|x) = fXY (x,y)
fX (x)

, fX (x) ̸= 0, (1)

where fXY and fX denote the joint density of (X ,Y ) and X , respectively.

By introducing Parzen-Rosenblatt [18,19] kernel estimators of these densities, namely,

f̂n,XY (x,y) =
1
n

n

∑
i=1

K′
h′(Xi − x)Kh(Yi − y),

f̂n,X (x) =
1
n

n

∑
i=1

K′
h′(Xi − x),

where Kh(.) = 1/hK(·/h) and K′
h′(·) = 1/h′K′(·/h′) are (rescaled) kernels with their associated sequence of bandwidth

h = hn and h′ = h′n going to zero as n → 1, one can construct the quotient

f̂n(y|x) =
f̂n,XY (x,y)

f̂n,X (x)
,

and obtain an estimator of the conditional density.

Sklar’s theorem below elucidates the role that copulas play in the relationship between bivariate distribution functions
and their univariate marginals see Sklar[25].

Theorem 1. [Sklar 1959] For any bivariate cumulative distribution function FX ,Y on R2, with marginal cumulative
distribution functions F of X and G of Y, there exists some function C : [0,1]2 → [0,1], called the dependence or copula
function, such as

FX ,Y (x,y) =C(F(x),G(y)), −∞ ≤ x,y ≤+∞. (2)
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If F and G are continuous, this representation is unique with respect to (F,G). The copula function C is itself a cumulative
distribution function on [0,1]2 with uniform marginal.

This theorem gives a representation of the bivariate c.d.f. as a function of each univariate c.d.f. That is to say, the copula
function captures the dependence structure among the components X and Y of the vector (X ,Y ), irrespectively of the
marginal distribution F and G. Simply put, it allows to deal with the randomness of the dependence structure and the
randomness of the marginal separately.

Copulas appear to be naturally linked with the quantile transform: in the case F and G are continuous, formula (2) is
simply obtained by defining the copula function as C(u,v) = FX ,Y (F−1(u),G−1(v)), 0 ≤ u ≤ 1, 0 ≤ v ≤ 1. For more
details regarding copulas and their properties, one can consult for example the book of Joe [15]. Copulas have endorsed a
revived importance in statistics, especially in finance, since the pioneering work of Räuschendorf [20] and Deheuvels
[6], who introduced the empirical copula process. Weak convergence of the empirical copula process was investigated by
Deheuvels [7], Van der Vaart and Wellner [26], Fermanian, Radulovic and Wegkamp [10]. For the estimation of the
copula density, refer to Gijbels and Mielniczuk [14], Fermanian [9] and Fermanian and Scaillet [12].

Here in after, we assume that the copula function C(u,v) has a density c(u,v) with respect to the Lebesgue measure on
[0,1]2 and that F and G are strictly increasing and differentiable with densities f and g. C(u,v) and c(u,v) are then the
cumulative distribution function (c.d.f.) and density respectively of the transformed variables (U,V ) = (F(x),G(y)). By
differentiating formula (2), we get for the joint density,

fXY (x,y) =
∂ 2FXY (x,y)

∂x∂y
=

∂ 2C(F(x);G(y))
∂F(x)∂G(y)

∂F(x)
∂x

∂G(y)
∂y

= f (x)g(y)c(F(x),G(y)),

where c(u,v) =
∂ 2C(u,v)

∂u∂v
is the above mentioned copula density. Eventually, we can obtain the following explicit formula

of the conditional density

f (y|x) = fXY (x,y)
f (x)

= g(y)c(F(x),G(y)), f (x) ̸= 0. (3)

Concerning the copula density c(u,v), we noted that c(u,v) is the joint density of the transformed variables (U,V ) =

(F(x),G(y)). Therefore, c(u,v) can be estimated by the bivariate Parzen-Rosenblatt kernel type non parametric density
(pseudo) estimator,

cn(u,v) =
1

nhnbn

n

∑
i=1

K
(

u−Ui

hn
,

v−Vi

bn

)
, (4)

where K is a bivariate kernel and hn,bn its associated bandwidth. For simplicity, we restrict ourselves to product kernels,
i.e. K(u,v) = K1(u)K2(v) with the same bandwidths hn = bn.

Nonetheless, since F and G are unknown, the random variables (Ui,Vi) are not observable, i.e. cn is not a true statistic.
Therefore, we approximate the pseudo-sample (Ui,Vi), i = 1, . . . ,n by its empirical counterpart (Fn(Xi),Gn(Yi)),

i = 1, . . . ,n. We therefore obtain a genuine estimator of c(u,v).

ĉn(u,v) =
1

nh2
n

n

∑
i=1

K1

(
u−Fn(Xi)

hn

)
K2

(
v−Gn(Yi)

hn

)
. (5)
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The empirical distribution functions Fn(x) and Gn(y) for F(x) and G(y) respectively,

Fn(x) =
n

∑
j=1

1X j≤x and Gn(y) =
n

∑
j=1

1Y j≤y.

Our estimated model is given as follows: the regression function r(x) is estimated by the function r̂n(x)

r(x) =E(Y |X = x) =
∫

y f (y|x)dy =
∫

yg(y)c(F(x),G(y))dy

=E(Y c(F(x),G(y))). (6)

This regression function r(x) is estimated by a function r̂n(x) =
∫

y f̂n(y/x)dy, thus, we obtain

r̂n(x) = E

(
1
n

n

∑
i=1

Yiĉn(Fn(x),Gn(y))

)
= E(Y ĉn(Fn(x),Gn(y))) .

For more detail see [8]. To state our result, we have to make some regularity assumptions on the kernels and the densities.

3 Construction estimators recursive

We propose in this article to study the parametric family of estimators defined by recursive kernel

r̂l
n,R(x) = E

(
Y ĉl

n,R(Fn(x),Gn(y))
)

with for l ∈ (0,1)

ĉl
n,R(Fn(x),Gn(y)) =

1(
n

∑
i=1

h1−l
i

)2

n

∑
i=1

1
h2l

i
K1

(
Fn(x)−Fn(Xi)

hi

)
K2

(
Gn(y)−Gn(Yi)

hi

)
.

Recall that cl
n,R and ĉl

n,R are density estimators of the copula c, respectively, based on pseudo-data unobservable
(F(Xi),G(Yi)), and their approximations (Fn(Xi),Gn(Yi)),

cl
n,R(u,v) =

n(
n

∑
i=1

h1−l
i

)2

n

∑
i=1

1
h2l

i
K1

(
u−Ui

hi

)
K2

(
v−Vi

hi

)
,

ĉl
n,R(u,v) =

n(
n

∑
i=1

h1−l
i

)2

n

∑
i=1

1
h2l

i
K1

(
u−Fn(Xi)

hi

)
K2

(
v−Gn(Yi)

hi

)
,

empirical distribution functions Fn(x) and Gn(y) for F(x) and G(y), respectively,

Fn(Xi) =
1
n

n

∑
i=1

IXi≤x
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and

Gn(Yi) =
1
n

n

∑
i=1

IYi≤y.

Our families estimators which can be calculated recursively by

ĉl
n+1,R(Fn(x),Gn(y)) =

n+1

(
n

∑
i=1

h1−l
i

)2

n

(
n+1

∑
i=1

h1−l
i

)2 ĉl
n,R (Fn(x),Gn(y))

+
n+1

h2l
n+1

(
n+1

∑
i=1

h1−l
i

)2 K1

(
Fn+1(x)−Fn+1(Xn+1)

hn+1

)
K2

(
Gn+1(y)−Gn+1(Yn+1)

hn+1

)
,

cl
n+1,R(u,v) =

n+1

(
n

∑
i=1

h1−l
i

)2

n

(
n+1

∑
i=1

h1−l
i

)2 ĉl
n,R(u,v)

+
n+1

h2l
n+1

(
n+1

∑
i=1

h1−l
i

)2 K1

(
u−Un+1

hn+1

)
K2

(
v−Vn+1

hn+1

)
,

ĉl
n+1,R(u,v) =

n+1

(
n

∑
i=1

h1−l
i

)2

n

(
n+1

∑
i=1

h1−l
i

)2 ĉl
n,R(u,v)

+
n+1

h2l
n+1

(
n+1

∑
i=1

h1−l
i

)2 K1

(
u−Fn+1(Xn +1)

hn+1

)
K2

(
v−Gn+1(Yn +1)

hn+1

)
.

For estimators asymptotically unbiased and full equal to 1, we normalize by the quantity

Bn,(1−l) =
1
n

n

∑
i=1

(
hi

hn

)1−l

.

Thus, we obtain:

ĉl
n,R(Fn(x),Gn(y)) =

B−2
n,(1−l)

nh2(1−l)
n

n

∑
i=1

1
h2l

i
K1

(
Fn(x)−Fn(Xi)

hi

)
K2

(
Gn(y)−Gn(Yi)

hi

)
,

cl
n,R(u,v) =

B−2
n,(1−l)

nh2(1−l)
n

n

∑
i=1

1
h2l

i
K1

(
u−Ui

hi

)
K2

(
v−Vi

hi

)
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and

ĉl
n,R(u,v) =

B−2
n,(1−l)

nh2(1−l)
n

n

∑
i=1

1
h2l

i
K1

(
u−Fn(Xi)

hi

)
K2

(
v−Gn(Yi)

hi

)
.

4 Notations and assumptions

We note the i− th moment of a generic kernel (possibly multivariate) K as

mi(K) =
∫

uiK(u)du

and the Lp norm of a function h by ∥s∥p =
∫

sp. We use the sign ≃ to denote the order of the bandwidths. Set (u,v) fixed

point in the interior of supp(c). The support of the density function c is noted by supp(c) = {(u,v) ∈ R2;c(u,v)> 0}
where A stands for the closure of a set A. Finally, OP(·) and oP(·) (respectively Oa.s(·) and oa.s(·)) will stands for
convergence and boundedness in probability (respectively almost surely).

Assumption (A)

(i) F of functions X and G of Y are strictly increasing and differentiable.
(ii) Density c is twice continuously differentiable with bounded second derivatives on its support.

(iii) Density c is uniformly continuous and non-zero almost everywhere on a compact set D ⊂ (0,1)× (0.1) included
inside the bracket of c.

Assumption (B)

(i) The kernels Ki are bounded and bounded variation, for i = {1,2}.
(ii) 0 < Ki < α for a constant α; for i = {1,2}.

(iii) The kernels Ki are second order: m0(Ki) =
∫

Ki(x)dx = 1, m1(Ki) =
∫

xKi(x)dx = 0, m2(Ki) =
∫

x2Ki(x)dx <+∞,

for i = {1,2}.
(iv) Ki is twice differentiable with second partial derivatives bounded, for i = {1,2}.

Assumption (C)

(i) hn → 0 and nh3
n → ∞, as n goes infinity.

(ii) ∀r ≤ 3, Bn,r =
1
n

n

∑
i=1

(
hi

hn

)r

→ βr < ∞.

5 Main results

In this section, we establish the almost sure convergence, convergence in mean square and asymptotic normality of the
family of recursive regression estimators r̂l

n,R(x).

Theorem 2. Let the regularity assumptions (A), (B) et (C) be satisfied and if the bandwidth hn tends to zero as n → ∞ in
such a way that

hl−3
n

√
lnn ln lnn → 0, hl−3

n

√
ln lnn

n
→ 0 and

ln lnn

nh2(2−l)
n

→ 0,
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then

r̂n(x) =r(x)+Oa.s

(
β−2
(1−l)β(−2l)

h3−l
n

√
lnn ln lnn

)
+Oa.s

(
β−2
(1−l)β(−2l)

h3−l
n

√
ln lnn

n

)

+Oa.s

(
β−2
(1−l)β(−2l) ln lnn

nh2(2−l)
n

)
.

Proof. Let
r(x) = E(YC(F(x),G(y)))

and
r̂l

n,R(x) = E
(

Y ĉl
n,R(Fn(x),Gn(x))

)
.

The main ingredient to prove that r̂(x) converges into r(x) results in the following decomposition:

r̂l
n,R(x)− r(x) =E

(
Y ĉl

n,R(Fn(x),Gn(y))−Y c(F(x),G(y))
)

=E
(

Y
[
ĉl

n,R(Fn(x),Gn(y))− cl
n,R(F(x),G(y))

+cl
n,R(F(x),G(y))− c(F(x),G(y))

])
.

Then, it is sufficient to prove that ĉl
n,R(U,V ) converges to cl

n,R(U,V ), and cl
n,R(U,V ) converges to c(U,V ) with

U = F(x), V = G(y).

Now, le’s recall a preliminary result that will be needed; the convergence of Kolmogorov-Smirnov statistic:

For (Xi, i = 1,2, . . . ,n) an i.i.d. sample of a real random variable X with common cdf F , the Kolmogorov-Smirnov
statistic is defined as Dn = ∥Fn −F∥. Glivenko-Cantelli, Kolmogorov and Smirnov, Chung, Donsker among others have
studied its convergence properties in increasing generality (See e.g. [24] and [25] for recent accounts). For our purpose,
we only need to formulate these results in the following rough form:

Lemma 1. For an i.i.d. sample from a continuous cdf F,

∥Fn −F∥∞ = Oa.s

(
ln lnn

n

)
i = 1,2, . . . ,n. (7)

Since F is unknown, the random variables Ui = F(Xi) are not observed. As a consequence of the preceding lemma, one
can naturally approximate these variables by the statistics Fn(Xi). Indeed,

∥F(Xi)−Fn(Xi)∥ ≤ sup
x∈R

∥F(x)−Fn(x)∥= ∥Fn −F∥∞ a.s.

Let

cl
n,R(u,v) =

B−2
n,(1−l)

nh2(1−l)
n

n

∑
i=1

1
h2l

i
K1

(
u−F(Xi)

hi

)
K2

(
v−G(Yi)

hi

)
,

and

ĉl
n,R(u,v) =

B−2
n,(1−l)

nh2(1−l)
n

n

∑
i=1

1
h2l

i
K1

(
u−Fn(Xi)

hi

)
K2

(
v−Gn(Yi)

hi

)
.
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So, we must show that Fn(Xi) converge to F(Xi) and Gn(Yi) converge to G(Yi).

ĉl
n,R(u,v)− cl

n,R(u,v) =
B−2

n,(1−l)

nh2(1−l)
n

n

∑
i=1

1
h2l

i
Γi,n,

with

Γi,n = K1

(
u−Fn(Xi)

hi

)
K2

(
v−Gn(Yi)

hi

)
−K1

(
u−F(Xi)

hi

)
K2

(
v−G(Yi)

hi

)
.

Let

Zi,n =

(
Fn(Xi)−F(Xi)

Gn(Yi)−G(Yi)

)
.

|Fn(Xi)−F(Xi)| ≤ ∥Fn −F∥∞ and |Gn(Yi)−G(Yi)| ≤ ∥Gn−G∥∞ a.s. for every i = 1, . . . ,n. Preceding Lemma 1 thus
entails that the norm of Zi,n is independent of i and such that

∥Zi,n∥= Oa.s

(√
lnlnn

n

)
i = 1, . . . ,n. (8)

Now, for every fixed (u,v) ∈ [0,1]2, since the kernel K is twice differentiable, there exists, by Taylor expansion, random
variables Ũi,n and Ṽi,n such that, almost surely,

Γ =
B−2

n,(1−l)

nh3(1−l)
n

n

∑
i=1

1
h2l

i
ZT

i,n∇K
(

u−F(Xi)

hi
,

v−G(Yi)

hi

)
+

B−2
n,(1−l)

nh4(1−l)
n

n

∑
i=1

1
h2l

i
ZT

i,n∇2K
(

u−Ũi,n

hi
,

v−Ṽi,n

hi

)
Zi,n

=Γ1 +Γ2

where ZT
i,n denotes the transpose of the vector Zi,n and ∇K and ∇2K the gradient and the Hessian respectively of the

multivariate kernel function K.

By centering at expectations, decompose further the first term Γ1 as,

Γ1 =
B−2

n,(1−l)

nh3(1−l)
n

n

∑
i=1

1
h2l

i
ZT

i,n

(
∇K
(

u−F(Xi)

hi
, . . .

)
−E∇K

(
u−F(Xi)

hi
, . . .

))

+
B−2

n,(1−l)

nh3(1−l)
n

n

∑
i=1

1
h2l

i
ZT

i,nE∇K
(

u−F(Xi)

hi
,

v−G(Yi)

hi

)

= Γ11 +Γ12

We again decompose one step further Γ11, set

Ai = ∇K
(

u−F(Xi)

hi
,

v−G(Yi)

hi

)
−E∇K

(
u−F(Xi)

hi
,

v−G(Yi)

hi

)
.

Then

|Γ11| ≤
B−2

n,(1−l)∥Zi,n∥

nh3(1−l)
n

n

∑
i=1

1
h2l

i
(∥Ai∥−E∥Ai∥)+

B−2
n,(1−l)∥Zi,n∥

nh3(1−l)
n

n

∑
i=1

1
h2l

i
E∥Ai∥

= Γ111 +Γ112.
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We now proceed to the study of the order of each terms in the previous decompositions.

To prove our results we often use the following lemma,

Lemma 2. Let (wn)n≥1 be a sequence of real numbers tending to w. If Assumptions (H.2) are satisfied for all r =]−∞,3]
then

1
n

n

∑
i=1

hi

hn

r
wi → βrw, when n → ∞.

Lemma 2 is an immediate consequence of Lemma Toeplitz (see Appendix). Indeed, if we set,

an,i =

{
1
n

(
hi
hn

)r
i f i ≤ n;

0 i f i > n,

then:

(i) for all i > 1,an,i ≤
hr

i
nhr

n
→ 0 as n → ∞, through the assumption (H.2)-(i).

(ii) With the assumption (H.2)-(ii), we also have

lim
n→∞

n

∑
i=1

an,i = lim
n→∞

Bn,r = βr < ∞.

(iii) There exists C > 0 such that for all n > 1,
n

∑
i=1

|an,i|<C < ∞ through the convergence Bn,r.

• Negligibility of Γ2.

Γ2 =
B−2

n,(1−l)

nh4(1−l)
n

n

∑
i=1

1
h2l

i
ZT

i,n∇2K
(

u−Ũi,n

hi
,

v−Ṽi,n

hi

)
Zi,n

=
B−2

n,(1−l)

nh2(2−l)
n

n

∑
i=1

(
hi

hn

)−2l

ZT
i,n∇2K

(
u−Ũi,n

hi
,

v−Ṽi,n

hi

)
Zi,n.

By the boundedness assumption on the second-order derivatives of the kernel, lemma 2 and equation (8),

Γ2 = Oa.s

(
β−2
(1−l)β(−2l) ln lnn

nh2(2−l)
n

)

• Negligibility of Γ12.

Γ12 =
B−2

n,(1−l)

nh3(1−l)
n

n

∑
i=1

1
h2l

i
ZT

i,nE∇K
(

u−F(Xi)

hi
,

v−G(Yi)

hi

)

=
B−2

n,(1−l)

nh3−l
n

n

∑
i=1

(
hi

hn

)2l

ZT
i,nE∇K

(
u−F(Xi)

hi
,

v−G(Yi)

hi

)
.

Bias results on the bivariate gradient kernel estimator (See Scott [23] chapter 6) entail that

E∇
(

K1

(
u−F(Xi)

hi

)
K2

(
v−G(Yi)

hi

))
= h3

n∇c(u,v)+O(h5
n).
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Cauchy-Schwartz inequality yields that

|Γ12| ≤
nB−2

n,(1−l)B−2l∥Zi,n∥

nh3−l
n

∥∥∥∥E∇
(

K1

(
u−F(Xi)

hi

)
K2

(
v−G(Yi)

hi

))∥∥∥∥ .
In turn, with equation (8) and lemma 2

Γ12 = Oa.s

(
β−2
(1−l)β(−2l)

h3−l
n

√
ln lnn

n

)
.

• Negligibility of Γ111.

Γ111 =
B−2

n,(1−l)∥Zi,n∥

nh3(1−l)
n

n

∑
i=1

1
h2l

i
(∥Ai∥−E∥Ai∥)

=
B−2

n,(1−l)∥Zi,n∥

nh3−l
n

n

∑
i=1

(
hi

hn

)−2l

(∥Ai∥−E∥Ai∥) .

Boundedness assumption on the derivative of the kernel imply that ∥Ai∥ ≤ 2α a.s. We apply Hoeffding inequality for
independent, centered, bounded by M, but non identically distributed random variables (η j) (e.g. see [5]),

P

(
n

∑
j=1

η j > t

)
≤ exp

(
−t2

2nM2

)
.

Here, for every ε > 0, with M = 2α, η j = ∥Ai∥−E∥Ai∥, t = ε
√

1
n ln lnn, therefore, which is the definition of almost

complete convergence (a.co.), see e.g. [13] definition A.3. p. 230. In turn, it means that

n

∑
i=1

(∥Ai∥−E∥Ai∥) = Oa.co

(√
n lnn

)
and by the Borell-Cantelli lemma,

n

∑
i=1

(∥Ai∥−E∥Ai∥) = Oa.s(
√

n(lnn)).

Therefore, by lemma 2 and using equation(8), we have that

Γ111 = Oa.s

(
β−2
(1−l)β(−2l)

h3−l
n

√
lnn ln(lnn)

)
.

• Negligibility of Γ112.

The right hand side of the previous inequality is, after an integration by parts, of order a3
n by the results on the kernel

estimator of the gradient of the density (See Scott [23] chapter 6). Therefore,

n

∑
i=1

E∥Ai∥= O(nh3
n)
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and

Γ112 =
B−2

n,(1−l)∥Zi,n∥

nh3(1−l)
n

n

∑
i=1

1
h2l

i
E∥Ai∥=

B−2
n,(1−l)∥Zi,n∥

nh3−l
n

n

∑
i=1

(
hi

hn

)2l

E∥Ai∥.

Thus,

Γ112 = Oa.s

(
β−2
(1−l)β−2l

h3−l
n

√
ln(lnn)

n

)
,

by equation (8) and lemma 2, recollecting all elements, we eventually obtain that

Γ =Γ111 +Γ112 +Γ12 +Γ2

=Oa.s

(
β−2
(1−l)β(−2l)

h3−l
n

√
lnn ln(lnn)

)
+Oa.s

(
β−2
(1−l)β(−2l)

h3−l
n

√
ln(lnn)

n

)
+Oa.s

(
β−2
(1−l)β(−2l) ln(lnn)

nh2(2−l)
n

)
.

By this last step we conclude the proof of our theorem.

It is now interested in the convergence in mean square r̂l
n,R(x). The following corollary establishes the asymptotic MSE

exact family(r̂l
n,R(x)).

Corollary 1. [1] Suppose that assumption of regularity are satisfied. the choice:

hn = Mn

(
lnn
n

)1/5

,Mn ↓ m > 0,

implies that: For all l ∈ [0,1]

n4/5E
[
r̂l

n,R(x)− r(x)
]
→ M2(x,K,φ, f , l) when n → ∞,

with:

M2(x,K,φ, f , l) =
{

m2(4+ l)[r(x)b f (x)+bφ(x)]
f (x)(2+ l)

}2

+
(4+ l)2∥K∥2

2V (x)
10c(2+ l) f (x)

,

where
bφ(x) =

1
2

∂φ
∂x

(x)
∫
R

νK(ν)dν ,

and

V (x) =
∫

K2(t)dt
φ(x)− r2(x)

f (x)
, (9)

The following corollary establishes the asymptotic normality of r̂l
n,R(x)

Corollary 2. [1] Suppose that assumption of regularity are satisfied and that the sequence hn is as:

nh5
n −→ 0 when n → ∞,

and all sequences of integers un and vn, we have: un ∼ vn ⇒ hun ∼ hvn . There is a real positive ζ0 > 4 as

nhn

(lnn)ζ0
→+∞ when n → ∞,
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then √
nhn[r̂l

n,R(x)− r(x)] ↪→ N

[
0,

β1−2l∥K∥2
2V (x)

β 2
1−l f (x)

]
when n → ∞,

where V (x) is given in (9).

Appendix

The theorem due to Bochner on the limit of ( f ∗Khn) is presented thereafter in the form of lemma.

Lemma 3. [4] If f is integrable and if K is a kernel limited and integrable such that |xK(x)| −→ 0 when x → ∞ and with
integral 1, we have

lim
hn→0

( f ∗Khn)(x) = f (x).

In a general way if g is continuous, we can write Khn ∗g −→
hn→0

g a.s.

The following Lemma says Toeplitz and recalled by Masry [16].

Lemma 4. Let (an)b≥1,k≥1 a real sequence and (wn)n≥1 a sequence which converge into w. Suppose that

(i) For all k ≥ 1, lim
n→∞

an,k = 0.

(ii) lim
n→∞

∞

∑
k=1

an,k = A < ∞.

(iii) There exists a constant C > 0 such that for any n ≥ 1,
∞

∑
k=1

|an,k|<CA < ∞.

Then we have
∞

∑
k=1

an,kwk −→n→∞
Aw.

Lemma 5. ( Borel-Cantelli Lemma) [17] Let (An)n≥1 a sequence of events. If
∞

∑
i=1

P(An) < ∞ (resp. = ∞ and if An are

independent), then
P
(

lim
n→∞

An

)
= 0 (resp. = 1).

Recall that for a sequence of events An,

lim
n→∞

An =
∞∩

n=1

∪
k≥n

Ak = lim
n→∞

↓
∪
k≥n

Ak.
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