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Abstract: It’s a reality that there is a relationship between a sigma function of Weierstrass and a theta function. We know that an
elliptic function can be set up using the theta functions just as it can be established with the help of sigma function of Weierstrass.

In this study, we investigate relations between the Dedekind’s η-function and θ -theta function by the using characteristic values[
ε
ε ′

]
≡
[

0
0

]
,

[
0
1

]
(mod2) for θ -function according to the (u,τ) pair , where u,τ complex numbers satisfying Imτ > 0. Also, we give

the transformations among the theta functions according to the quarter periods and obtain a Jacobian style elliptic function by the help
of a function we define.

Keywords: characteristic values, Dedekind’s η-function, theta function, period pair, complex numbers.

1 Introduction

The ℘(u),ζ (u), and σ (u)-functions of Weiestrass which we have so far considered are not suitable to numerical
computation. Therefore, it can be favorable to introduce another function defined by θ (u,τ), which is directly connected
with the sigma function of Weierstrass. Let τ be a complex variable, where τ = ω2

ω1
is not real number, ω1,ω2 are period

points and Imτ > 0, let ω = mω1 +nω2 with m,n = 0,±1,±2, ... and let u be a complex variable. The function θ(u,τ) is
defined by the series,

θ

[
ε
ε ′

]
(u,τ) = ∑

n
exp

{
(n+

ε
2
)

2
πiτ +2πi(n+

ε
2
)(u+

ε ′

2
)

}
, (1)

where [
ε
ε ′

]
≡

[
1
1

]
,

[
0
1

]
,

[
1
0

]
,

[
0
0

]
(mod 2),

ε and ε’ are integers and n ranges over all the integers (-∞to∞) [1]. The series (1) converges absolutely and uniformly in
compact sets of the u-complex plane and therefore represents an entire function of u [2].

If (ω1,ω2) is a pair of complex numbers with Imτ > 0 and ω = mω1 +nω2 with m,n = 0,±1,±2, ... then for |u| ≤ R, we
find

θ

[
ε
ε ′

]
(u+

1
2r +

τ
2r ,τ) = µθ

[
ε + 1

2r−1

ε ′+ 1
2r−1

]
, (2)
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where
µ = exp{− 1

4r (τ +2)πi− 1
2r (2u+ ε ′)πi}

and [
ε
ε ′

]
≡

[
1
1

]
,

[
0
1

]
,

[
1
0

]
,

[
0
0

]
(mod 2),

and ε ′ are integers in [5].

θ

[
ε
ε ′

]
(u,τ) = ∑

n
exp

{
(n+

ε
2
)

2
πiτ +2πi(n+

ε
2
)(u+

ε ′

2
)

}
, (3)

where [
ε
ε ′

]
≡

[
1
1

]
,

[
0
1

]
,

[
1
0

]
,

[
0
0

]
(mod 2),

ε and ε’ are integers n ranges over all the integers (-∞ to ∞) in [2].

θ

[
ε
ε ′

]
(u,τ) = ∑

n
exp

{
(n+

ε
2
)

2
πiτ +2i(n+

ε
2
)(u− ε ′

2
π)

}
(4)

where [
ε
ε ′

]
≡

[
1
1

]
,

[
0
1

]
,

[
1
0

]
,

[
0
0

]
(mod 2),

ε and ε’ are integers n ranges over all the integers (-∞ to ∞) in [4].

If [
ε
ε ′

]
≡

[
1
1

]
(mod 2)

then

θ

[
1
1

]
(u,τ) =−i∑

n
(−1)n exp

{
(n+

1
2
)

2
πiτ +(2n+1)πiu

}
. (5)

This the function

θ

[
1
1

]
(u,τ)

is alternative formula in [3].

If [
ε
ε ′

]
≡

[
0
0

]
(mod 2)

and u = 0 then

θ

[
0
0

]
(0,τ) = ∑

n
exp(n2πiτ). (6)
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This is the function

θ

[
0
0

]
(0,τ)

that is an alternative formula in [1].

Definition 1. A period, denoted by {
a
b

}
,

is b+aτ . A quarter period is quarter of a period, written

1
4

{
a
b

}
=

b
4
+

aτ
4
.

A reduced quarter-period is a quarter-period in which a and b equal 0 or 1 [5]. With the help of this alternative formula
(2) in [5] above, we can get the following equalities according to quarter-periods.

If [
ε
ε ′

]
≡

[
1
1

]
(mod 2)

then

θ

[
1
1

]
(u+

1
4

{
1
1

}
,τ) = ∑

n
exp

{
(n+

1
2
)

2
πiτ +2πi(n+

1
2
)(u+

1
4

{
1
1

}
+

1
2

}

= ie−
πiτ
4 ∑

n
(−1)n exp

{
(n+

1
2
)

2
πiτ +(2n+1)πiu+

nπi
2

+
nπiτ

2
+

πiτ
4

+
πi
4

}
. (7)

If [
ε
ε ′

]
≡

[
1
0

]
(mod 2)

then

θ

[
1
0

]
(u+

1
4

{
1
1

}
,τ) = ∑

n
exp

{
(n+

ε
2
)

2
πiτ +2πi(n+

1
2
)(u+

1
4

{
1
1

}}

= e−
πiτ
4 ∑

n
exp

{
(n+

1
2
)

2
πiτ +(2n+1)πiu+

nπi
2

+
nπiτ

2
+

πiτ
4

+
πi
4

}
. (8)

Using the equations (7) and (8) we can get

θ

[
1
1

]
(u+ 1

4

{
1
1

}
,τ)

θ

[
1
0

]
(u+ 1

4

{
1
1

}
,τ)

=

ie−
πiτ
4 ∑

n
(−1)n exp

{
(n+ 1

2 )
2πiτ +(2n+1)πiu+ nπi

2 + nπiτ
2 + πiτ

4 + πi
4

}
e−

πiτ
4 ∑

n
exp

{
(n+ 1

2 )
2πiτ +(2n+1)πiu+ nπi

2 + nπiτ
2 + πiτ

4 + πi
4

} .

(i) If n is 0 or even integer then, θ

[
1
1

]
(u+ 1

4

{
1
1

}
,τ) = iθ

[
1
0

]
(u+ 1

4

{
1
1

}
,τ).
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(ii) If n is odd integer then θ

[
1
1

]
(u+ 1

4

{
1
1

}
,τ) = -iθ

[
1
0

]
(u+ 1

4

{
1
1

}
,τ).

If [
ε
ε ′

]
≡

[
0
1

]
(mod 2),

then

θ

[
0
1

]
(u+ 1

4

{
1
1

}
,τ) = ∑

n
exp

{
n2πiτ +2nπi(u+ 1

4

{
1
1

}
+ 1

2

}
= ∑

n
(−1)n exp

{
n2πiτ +2nπiu+ nπi

2 + nπiτ
2

}
.

(9)

If

[
ε
ε ′

]
≡

[
0
0

]
(mod 2), then

θ

[
0
0

]
(u+ 1

4

{
1
1

}
,τ) = ∑

n
exp

{
n2πiτ +2nπi(u+ 1

4

{
1
1

}}
= ∑

n
exp

{
n2πiτ +2nπiu+ nπi

2 + nπiτ
2

}
.

(10)

From the equations (9) and (10) we obtain

θ

[
0
1

]
(u+ 1

4

{
1
1

}
,τ)

θ

[
0
0

]
(u+ 1

4

{
1
1

}
,τ)

=
∑
n
(−1)n exp

{
n2πiτ +2nπiu+ nπi

2 + nπiτ
2

}
∑
n

exp
{

n2πiτ(2nπiu+ nπi
2 + nπiτ

2

} .

(iii) If n is 0 or even integer then

θ

[
0
1

]
(u+

1
4

{
1
1

}
,τ) = θ

[
0
0

]
(u+

1
4

{
1
1

}
,τ).

(iv) If n is odd integer the

θ

[
0
1

]
(u+

1
4

{
1
1

}
,τ) = θ

[
0
0

]
(u+

1
4

{
1
1

}
,τ).

Theorem 1. The function

θ

[
1
1

]
(u,τ)

defined in [3] is odd function of u and it can be expressed by infinite product

θ

[
1
1

]
(u,τ) = ce

πiτ
4 2sinπu

∞

∏
n=1

{
1− e2(nτ+u)πi

} ∞

∏
n=1

{
1− e2(nτ−u)πi

}

where c =
∞
∏

n=1
(1− e2nπiτ), Imt > 0 [2]. We consider the function ϕ(u,τ) expressed by product

φ(u,τ) =
∞

∏
n=1

{
1− e[(2n−1)τ+2u]πi

} ∞

∏
n=1

{
1− e[(2n−1)τ−2u]πi

}
c⃝ 2016 BISKA Bilisim Technology
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Theorem 2. The function

θ

[
1
1

]
(u,τ)

φ(u,τ)

is a elliptic function with periods 1 and τ.

Proof. Let

ψ(u,τ) =
θ

[
1
1

]
(u,τ)

φ(u,τ)
.

We write

ψ(u+1,τ) =
θ

[
1
1

]
(u+1,τ)

φ(u+1,τ)
=

−θ

[
1
1

]
(u,τ)

φ(u,τ)
=

θ

[
1
1

]
(−u,τ)

φ(u,τ)

where

θ

[
1
1

]
(u,τ) =−θ

[
1
1

]
(−u,τ).

From theorem 2. We write

ψ(u+ τ,τ) =
θ

[
1
1

]
(u+ τ,τ)

φ(u+ τ,τ)
=

−e−(2u+τ)πiθ

[
1
1

]
(u,τ)

e−(2u+τ)πiφ(u,τ)
=

θ

[
1
1

]
(u,τ)

φ(u,τ)
.

Since for where n = m.

φ(u+ τ,τ) =
∞

∏
n=1

{
1− e(2n−1)τπi+2πi(u+τ)

} ∞

∏
n=1

{
1− e(2n−1)τπi−2πi(u+τ)

}
=

∞

∏
n=1

{
1− e(2n+1)τπi+2πiu

} ∞

∏
n=1

{
1− e(2n−3)τπi−2πiu

}
=

∞

∏
n=1

{
1− e[2(n+1)−1]τπi+2πiu

} ∞

∏
n=1

{
1− e[2(n−1)−1]τπi−2πiu

}
=

∞

∏
m=2

{
1− e(2m−1)τπi+2πiu

} ∞

∏
n=0

{
1− e

(2m−1)τπi−2πiu
}

=
∞

∏
m=1

{
1− e(2m−1)τπi+2πiu

} ∞

∏
m=1

{
1− e

(2m−1)τπi−2πiu
}{

1− e−(πiτ+2πiu)
}{

1− e(πiτ+2πiu)
}−1

=−e−(2u+τ)πiφ(u,τ).

The function ψ(u,τ) is therefore a doubly periodic with periods 1 and τ having neither zeros nor poles on account of the
fact that

θ

[
1
1

]
(u,τ)

possesses the same periodicity factors as ϕ(u,τ). Hence the function ψ(u,τ) is an elliptic function since the set of all
meromorphic functions form a field and ψ(u,τ) is meromorphic and periodic with periods 1 and τ .
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The Riemann’s θ -function was defined by the series

θ

[
a
b

]
(u,τ) =

∞

∑
n=−∞

exp
{
(n+a)2πiτ +2πi(n+a)(u+b)

}

with a given complex number u and complex number τ satisfying Im(τ = ω1
ω2

̸= real) > 0 and characteristic

[
a
b

]
where

a and b are rational numbers [3].

We want to define an action of an element of

M =

[
d c
b a

]
on theta function.

We try the special value of M =

[
d c
b a

]
=

[
1 0
1 1

]
(Mod 2),

θ

[
µ1

µ2

]
(u,τ) = θ

[
dµ − cµ ′+ cd

2

−bµ +aµ ′+ ab
2

]
(

z
cτ +d

,
aτ +b
cτ +d

) = θ

[
µ

−µ +µ ′+ 1
2

]
(z,τ +1)

=
∞

∑
n=−∞

exp
{
(n+µ)2πi(τ +1)+2πi(n+µ)(z−µ +µ ′+

1
2
)

}
=

∞

∑
n→∞

exp
{
(n+µ)2µ iτ +2πi(n+µ)(z+µ ′)+(n+µ)2πi+2πi(n+µ)(−µ +

1
2
)

}
=

∞

∑
n=−∞

exp
{
(n+µ)2πiτ +2πi(n+µ)(z+µ ′)+πi(n2 +n+µ −µ2)

}
= expπi(µ −µ2)θ

[
µ
µ ′

]
(z,τ).

Since n2 +n = n(n+1) is congruent to zero module 2 [n(n+1) if n ≡ 0(mod 2) and |n(n+1) ] from n+1 ≡ 0(mod 2)
if n ≡ 1(mod 2)).

We use the special value of θ - function with characteristic

[
ε
ε ′

]

θ

[
ε
ε ′

]
(u,τ) =

∞

∑
n=−∞

exp
{
(n+ ε

2 )
2πiτ +2πi(n+ ε

2 )(u+
ε ′
2 )

}
where [

ε
ε ′

]
≡

[
0
1

]
,

[
0
0

]
(mod 2)

and ε, ε ′ are integers.

c⃝ 2016 BISKA Bilisim Technology



NTMSCI 4, No. 1, 78-86 (2016) / www.ntmsci.com 84

Thus, we have the following relations

θ

[
0
0

]
(u,τ) =

∞

∑
n=−∞

(exp(n2πiτ +2nπiu).

θ

[
0
1

]
(u,τ) =

∞

∑
n=−∞

(−1)n exp(n2πiτ +2nπiu).

Theorem 3. There is a connection the Weierstrass’s σ -function and a theta function as the following

σ(u;ω1,ω2) = θ( u
ω1
,τ).

ω1

θ ′(0,τ)
.e

u2

ω1
η1

where η1 = ζ (ω1
2 ), and (ω1,ω2) is a pair of periods of the Weierstrass’s elliptic function ℘(u;ω1,ω2) [4] .

Now, let us observe that

θ

[
0
0

]
(u,τ) = θ

[
0
0

]
(u,τ) = ∑

n
exp(n2πiτ +2nπiu).

Then, we see that the function θ

[
0
0

]
(0,τ) defined by the series in [1] is a alternative formula of θ

[
ε
ε ′

]
(u,τ). The

formulas θ

[
0
0

]
(u,τ) and θ

[
0
1

]
(u,τ) are used in this article where u ̸= 0. we see the infinite products at the first

θ

[
0
0

]
(u,τ) =

∞

∏
n=1

(1− e2nπiτ).
∞

∏
n=1

(1+ e(2n−1)πiτ+2πiu).
∞

∏
n=1

(1+ e(2n−1)πiτ−2πiu).

which it converges absolutely [2].

Theorem 4. We have the relations

(i) η(u) = e
πiu
12 .θ

[
0
0

]
( u+1

2 , 3u+2k).

(ii) θ

[
0
1

]
( u+4

4 , 3
2 u) = e−

πiu
12 η(u)

∞
∏

n=1
(1− e(2n−1)πiu),

where τ = 3
2 u and u = u+4

4 between the functions θ

[
0
0

]
(u,τ),θ

[
0
1

]
(u,τ) and Dedekind’s η-function which

defined by the infinite product

η(u) = e
πiu
12 .

∞

∏
n=1

(1− e2nπiu)

where Imτ > 0 and k is a integer.

Proof.

(a) Let us recall the formula

θ

[
0
0

]
(u,τ) =

∞

∏
n=1

(1− e2nπiτ).
∞

∏
n=1

(1+ e(2n−1)πiτ+2πiu).
∞

∏
n=1

(1+ e(2n−1)πiτ−2πiu).
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If k integer, then we have

θ

[
0
0

]
( u+1

2 ,3u+2k)

=
∞
∏

n=1
(1− e2nπi(3u+2k))

∞
∏

n=1
(1+ e(2n−1)πi(3u+2k)+2πi( u+1

2 ))
∞
∏

n=1
(1+ e(2n−1)πi(3u+2k)−2πi( u+1

2 ))

=
∞

∏
n=1

(1− e6nπiu).
∞

∏
n=1

(1+ e6nπiu−2πiu−(2k−1)πi).
∞

∏
n=1

(1+ e6nπiu−4πiu−(2k+1)πi)

=
∞

∏
n=1

(1− e6nπiu).
∞

∏
n=1

(1− e6nπiu−2πiu).
∞

∏
n=1

(1− e6nπiu−4πiu) for τ = 3u+2k and u = u+1
2 .

If we set R= e2πiu, then we obtain

θ

[
0
0

]
( u+1

2 ,3u+2k) =
∞

∏
n=1

(1−R3n)
∞

∏
n=1

(1−R3n−1)
∞

∏
n=1

(1−R3n−2).

On the other hand, we may set n = n′+1, then

θ

[
0
0

]
( u+1

2 ,3u+2k) =
∞

∏
n′=1

(1−R3n′+3)
∞

∏
n′=1

(1−R3n′+2)
∞

∏
n′=1

(1−R3n′+1)

= (1−R)(1−R2)(1−R3)(1−R4)...=
∞

∏
m=1

(1−Rm) =
∞

∏
m=1

(1− e2mπiu).

According to above, we have

η(u) = e
πiu
12 .θ

[
0
0

]
( u+1

2 , 3u+2k)

from the Dedekind’s η-function defined by the infinite product

η(u) = e
πiu
12 .

∞

∏
n=1

(1− e2nπiu)

where m = n′.
(b) We have

θ

[
0
1

]
(u,τ) =

∞

∑
n=−∞

(−1)n exp(n2πiτ +2nπiu)

θ

[
0
1

]
( u+4

4 , 3
2 u) =

∞

∑
n=−∞

(−1)n exp
[ 1

2 n(3n+1)πiu
]

=1+
∞
∑

n=1
(−1)n{exp

[ 1
2 n(3n−1)πiu

]
+ exp

[ 1
2 n(3n+1)πiu

]}
= 1+

∞

∑
n=1

(−1)n
[

x
1
2 n(3n−1)+ x

1
2 n(3n+1)

]
= 1− x− x2 + x5 + x7 − x12 − x15 + ...

θ

[
0
1

]
( u+4

4 , 3
2 u) = 1− x)(1− x2)(1− x3)...=

∞

∏
n=1

(1− xn)
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where x = eπiu for |x|< 1 and 1
2 n(3n+1) are known as the pentagonal numbers n =−1,−2,−3, ...

This results play an important role in the workings concerning relations between the theta function and Dedekind’s η-
function.

θ

[
0
1

]
( u+4

4 , 3
2 u)

∞
∏

n=1
(1− e(2n−1)πiu)

=

∞
∑

n=−∞
(−1)n exp( 1

2 n(3n+1)πiu)

∞
∏

n=1
(1− e(2n−1)πiu)

=

∞
∏

n=1
(1− enπiu)

∞
∏

n=1
(1− e(2n−1)πiu)

=
∞

∏
n=1

(1− e2nπiu) = e−
πiu
12 η(u).

2 Conclusion

As a result, it has been obtained the relation between theta function and Dedkind’s function by using the characteristic[
0
1

]

and the variable τ = u+4
4 instead of the characteristic [

0
0

]

and the variable τ = u+1
2 which were previously used by Jaccobi.
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