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Abstract: The differential geometry of tangent bundles was studied by several authors, for example: D. E. Blair [1], V. Oproiu [3], A.
Salimov [5], Yano and Ishihara [8] and among others. It is well known that differant structures deffined on a manifold M can be lifted to
the same type of structures on its tangent bundle. Our goal is to study Lie derivatives of almost contact structure and almost paracontact
structure with respect to XC and XV on tangent bundle T (M). In addition, this Lie derivatives which obtained shall be studied for some
special values.
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1 Introduction

Let M be an n−dimensional differentiable manifold of class C∞ and let Tp(M) be the tangent space of M at a point p of
M. Then the set [8]

T (M) = ∪
p∈M

Tp(M) (1)

is called the tangent bundle over the manifold M. For any point p̃ of T (M), the correspondence p̃ → p determines the
bundle projection π : T (M)→ M, thus π(p̃) = p, where π : T (M)→ M defines the bundle projection of T (M) over M.

The set π−1(p) is called the fibre over p ∈ M and M the base space.

Suppose that the base space M is covered by a system of coordinate neighbour-hoods
{

U ;xh
}
, where (xh) is a system of

local coordinates defined in the neighbour-hood U of M. The open set π−1(U) ⊂ T (M) is naturally differentiably
homeomorphic to the direct product U ×Rn, Rn being the n−dimensional vector space over the real field R, in such a
way that a point p̃ ∈ Tp(M)(p ∈ U) is represented by an ordered pair (P,X) of the point p ∈ U, and a vector X ∈ Rn

,whose components are given by the cartesian coordinates (yh) of p̃ in the tangent space Tp(M) with respect to the natural
base {∂h} , where ∂h = ∂

∂xh . Denoting by (xh) the coordinates of p = π(p̃) in U and establishing the correspondence
(xh,yh)→ p̃ ∈ π−1(U), we can introduce a system of local coordinates (xh,yh) in the open set π−1(U)⊂ T (M). Here we
cal (xh,yh) the coordinates in π−1(U) induced from (xh) or simply, the induced coordinates in π−1(U).

We denote by ℑr
s(M) the set of all tensor fields of class C∞and of type (r,s) in M. We now put ℑ(M) =

∞
∑

r,s=0
ℑr

s(M),

which is the set of all tensor fields in M. Similarly, we denote by ℑr
s(T (M)) and ℑ(T (M)) respectively the corresponding

sets of tensor fields in the tangent bundle T (M).
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2 Vertical lifts

If f is a function in M, we write f v for the function in T (M) obtained by forming the composition of π : T (M)→ M and
f : M → R, so that

f v = f oπ. (2)

Thus, if a point p̃ ∈ π−1(U) has induced coordinates (xh,yh), then

f v(p̃) = f v(x,y) = f oπ(p̃) = f (p) = f (x). (3)

Thus, the value of f v(p̃) is constant along each fibre Tp(M) and equal to the value f (p). We call f v the vertical lift of the
function f [8].

Let X̃ ∈ ℑ1
0(T (M)) be such that X̃ f v = 0 for all f ∈ ℑ0

0(M). Then we say that X̃ is a vertical vector field. Let

[
X̃h

X̃ h̄

]
be

components of X̃ with respect to the induced coordinates. Then X̃ is vertical if and only if its components in π−1(U)

satisfy [
X̃h

X̃ h̄

]
=

[
0

X h̄

]
. (4)

Suppose that X ∈ ℑ1
0(M), so that is a vector field in M. We define a vector field Xv in T (M) by

Xv(ι ω) = (ωX)v (5)

ω being an arbitrary 1−form in M. We cal Xv the vertical lift of X [8].

Let ω̃ ∈ ℑ0
1(T (M)) be such that ω̃(X)v = 0 for all X ∈ ℑ1

0(M). Then we say that ω̃ is a vertical 1−form in T (M). We
define the vertical lift ωv of the 1−form ω by

ωv = (ωi)
v(dxi)v (6)

in each open set π−1(U), where (U ;xh) is coordinate neighbourhood in M and ω is given by ω = ωidxi in U . The vertical
lift ωv of ω with lokal expression ω = ωidxi has components of the form

ωv : (ω i,0) (7)

with respect to the induced coordinates in T (M).

Vertical lifts to a unique algebraic isomorphism of the tensor algebra ℑ(M) into the tensor algebra ℑ(T (M)) with respect
to constant coefficients by the conditions

(P⊗Q)V = PV ⊗QV , (P+R)V = PV +RV (8)

P,Q and R being arbitrary elements of ℑ(M). The vertical lifts FV of an element F ∈ ℑ1
1(M) with lokal components Fh

i

has components of the form [8]

FV :

(
0 0

Fh
i 0

)
. (9)
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Vertical lift has the following formulas ([4],[8]):

( f X)v = f vXv, IvXv = 0,ηv (Xv) = 0 (10)

( f η)v = f vηv, [Xv,Y v] = 0,φvXv = 0

Xv f v = 0,Xv f v = 0

hold good, where f ∈ ℑ0
0(Mn), X ,Y ∈ ℑ1

0(Mn), η ∈ ℑ0
1(Mn), φ ∈ ℑ1

1(Mn), I = idMn .

3 Complete lifts

If f is a function in M, we write f c for the function in T (M) defined by

f c = ι(d f )

and call f c the comple lift of the function f . The complete lift f c of a function f has the lokal expression

f c = yi∂i f = ∂ f (11)

with respect to the induced coordinates in T (M), where ∂ f denotes yi∂i f .

Suppose that X ∈ ℑ1
0(M). then we define a vector field Xc in T (M) by

Xc f c = (X f )c, (12)

f being an arbitrary function in M and call Xc the complete lift of X in T (M) ([2],[8]). The complete lift Xc of X with
components xh in M has components

Xc =

(
Xh

∂Xh

)
(13)

with respect to the induced coordinates in T (M).

Suppose that ω ∈ ℑ0
1(M), then a 1−form ωc in T (M) defined by

ωc(Xc) = (ωX)c. (14)

X being an arbitrary vector field in M. We call ωc the complete lift of ω. The complete lift ωc of ω with components ωi

in M has components of the form
ωc : (∂ωi,ωi) (15)

with respect to the induced coordinates in T (M) [2].

The complete lifts to a unique algebra isomorphism of the tensor algebra ℑ(M) into the tensor algebra ℑ(T (M)) with
respect to constant coefficients, is given by the conditions

(P⊗Q)C = PC ⊗QV +PV ⊗QC, (P+R)C = PC +RC, (16)
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where P,Q and R being arbitrary elements of ℑ(M). The complete lifts FC of an element F ∈ℑ1
1(M) with lokal components

Fh
i has components of the form

FC :

(
Fh

i 0
∂Fh

i Fh
i

)
. (17)

In addition, we know that the complete lifts are defined by ([4],[8]):

( f X)c = f cXv + f vXc = (X f )c, (18)

Xc f v = (X f )v ,ηv (xc) = (η (x))v ,

Xv f c = (X f )v ,φvXc = (φX)v ,

φcXv = (φX)v ,(φX)c = φcXc,

ηv (Xc) = (η (X))c ,ηc (Xv) = (η (X))v ,

[Xv,Y c] = [X ,Y ]v , Ic = I, IvXc = Xv, [Xc,Y c] = [X ,Y ]c .

Let M be an n−dimensional diferentiable manifold. Differantial transformation D = LX is called Lie derivation with
respect to vector field X ∈ ℑ1

0(M) if

LX f = X f ,∀ f ∈ ℑ0
0(M), (19)

LXY = [X ,Y ],∀X ,Y ∈ ℑ1
0(M).

[X ,Y ] is called by Lie bracked. The Lie derivative LX F of a tensor field F of type (1,1) with respect to a vector field X is
defined by ([8])

(LX F)Y = [X ,FY ]−F [X ,Y ].

Proposition 1. For any X ∈ ℑ1
0(Mn), f ∈ ℑ0

0(Mn) and LX is the Lie derivation with respect to vector field X [8]

(i) LXv f v = 0,
(ii) LXv f c = (LX f )v,

(iii) LXc f v = (LX f )v,

(iv) LXc f c = (LX f )c.

Proposition 2. For any X ,Y ∈ ℑ1
0(Mn) and LX is the Lie derivation with respect to vector field X [8]

(i) LXvY v = 0,
(ii) LXvY c = (∇XY )v,

(iii) LXcY v = (∇XY )v,

(iv) LXcY c = (∇XY )c.

4 Main results

Definition 1. Let an n−dimensional differentiable manifold M be endowed with a tensor field φ of type (1,1),a vector
field ξ , a 1−form η , I the identity and let them satisfy

φ2 =−I +η ⊗ξ , φ(ξ ) = 0, ηoφ = 0, η(ξ ) = 1. (20)
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Then (φ ,ξ ,η) define almost contact structure on M ([4],[7],[8]). From (20), we get on taking complete and vertical lifts

(φc)2 =−I +ηv ⊗ξ c +ηc ⊗ξ v, (21)

φcξ v = 0,φcξ c = 0,ηvoφc = 0,

ηcoφc = 0,ηv(ξ v) = 0,ηv(ξ c) = 1,

ηc(ξ v) = 1,ηc(ξ c) = 0.

We now define a (1,1) tensor field J on ℑ(M) by

J = φc −ξ v ⊗ηv +ξ c ⊗ηc. (22)

Then it is easy to show that J2Xv =−Xv and J2Xc =−Xc, which give that J is an almost contact structure on ℑ(M). We
get from (22)

JXv = (φX)v +(η(X))vξ c,

JXc = (φX)c − (η(X))vξ v +(η(X))cξ c

for any X ∈ ℑ1
0(M) [4].

Theorem 1. For LX the operator Lie derivation with respect to X, J ∈ ℑ1
1(ℑ(M)) defined by (22) and η(Y ) = 0, we have

(i) (LXvJ)Y v = 0,
(ii) (LXvJ)Y c = ((LX φ)Y )v +((LX η)Y )vξ c,

(iii) (LXcJ)Y v = ((LX φ)Y )v +((LX η)Y )vξ c,

(iv) (L c
XcJ)Y c = ((LX φ)Y )c − ((LX η)Y )vξ v +((LX η)Y )cξ c,

where X ,Y ∈ ℑ1
0(M), a tensor field φ ∈ ℑ1

1(M), a vector field ξ and a 1−form η ∈ ℑ0
1(M).

Proof. For J = φc −ξ v ⊗ηv +ξ c ⊗ηc and η(Y ) = 0, we get

(i) (LXvJ)Y v = LXv(φc −ξ v ⊗ηv +ξ c ⊗ηc)Y v − (φc −ξ v ⊗ηv +ξ c ⊗ηc)LXvY v

= LXv(φY )v −LXv(ηv(Y )v)ξ v +LXv(η(Y ))vξ c

= 0,
(ii) (LXvJ)Y c = LXv(φc −ξ v ⊗ηv +ξ c ⊗ηc)Y c − (φc −ξ v ⊗ηv +ξ c ⊗ηc)LXvY c

= LXvφcY c −LXv(ηY )vξ v +LXv(η(Y ))cξ c −φcLXvY c

+ηv(LXY )vξ v − (η(LXY ))vξ c

= (LXvφc)Y c +φc(LXvY c)−φcLXvY c − (LX (η(Y )))vξ c +((LX η)Y )vξ c

= (LX φ)Y )v +((LX η)Y )vξ c,

(iii) (LXcJ)Y v = LXc(φc −ξ v ⊗ηv +ξ c ⊗ηc)Y v − (φc −ξ v ⊗ηv +ξ c ⊗ηc)LXcY v

= LXcφcY v −LXc(ηv(Y )v)ξ v +LXc(η(Y ))vξ c −φcLXcY v

+ηv(LXY )vξ v − (η(LXY ))vξ c

= (LXcφc)Y v +φc(LXcY v)−φcLXcY v − (LX (η(Y )))vξ c +(LX η)Y )vξ c

= (LX φ)Y )v +((LX η)Y )vξ c,

(iv) (LXcJ)Y c = LXc(φc −ξ v ⊗ηv +ξ c ⊗ηc)Y c − (φc −ξ v ⊗ηv +ξ c ⊗ηc)LXcY c

= LXcφcY c −LXc((ηY )v)ξ v +LXc(η(Y ))cξ c −φcLXcY c

+(η(LXY ))vξ v − (η(LXY ))cξ c

= (LXcφc)Y c +φc(LXcY c)−φcLXcY c +(LX (η(Y )))vξ v − ((LX η)Y )vξ v
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− (LX (η(Y )))cξ c +((LX η)Y )cξ c

= (LX φ)Y )c − ((LX η)Y )vξ v +((LX η)Y )cξ c.

Corollary 1. If we put Y = ξ , i.e. η(ξ ) = 1 and ξ has the conditions of (20), then we get different results

(i) (LXv J)ξ v = (LX ξ )v,

(ii) (LXv J)ξ c = ((LX φ)ξ )v +(((LX η))ξ )vξ c,

(iii) (LXc J)ξ v = ((LX φ)ξ )v +(LX ξ )c +((LX η)ξ )vξ c,

(iv) (LXc J)ξ c = (LX φ)ξ )c − (LX ξ )v − ((LX η)ξ )vξ v +((LX η)ξ )cξ c.

Definition 2. Let an n−dimensional differentiable manifold M be endowed with a tensor field φ of type (1,1), a vector
field ξ , a 1−form η , I the identity and let them satisfy

φ2 = I −η ⊗ξ , φ(ξ ) = 0, ηoφ = 0, η(ξ ) = 1. (23)

Then (φ,ξ ,η) define almost paracontact structure on M ([4],[7]). From (23), we get on taking complete and vertical lifts

(φc)2 = I −ηv ⊗ξ c −ηc ⊗ξ v, (24)

φcξ v = 0,φcξ c = 0,ηvoφc = 0,

ηcoφc = 0,ηv(ξ v) = 0,ηv(ξ c) = 1,

ηc(ξ v) = 1,ηc(ξ c) = 0.

We now define a (1,1) tensor field J̃ on ℑ(M) by

J̃ = φc −ξ v ⊗ηv −ξ c ⊗ηc. (25)

Then it is easy to show that J̃2Xv = Xv and J̃2Xc = Xc, which give that J̃ is an almost product structure on ℑ(M). We get
from (25) for any X ∈ ℑ1

0(M).

J̃Xv = (φX)v − (η(X))vξ c,

J̃Xc = (φX)v − (η(X))vξ v − (η(X))cξ c.

Theorem 2. For LX the operator Lie derivation with respect to X, J̃ ∈ ℑ1
1(ℑ(M)) defined by (25)and η(Y ) = 0, we have

(i) (LXv J̃)Y v = 0,
(ii) (LXv J̃)Y c = ((LX φ)Y )v − ((LX η)Y )vξ c,

(iii) (LXc J̃)Y v = ((LX φ)Y )v − ((LX η)Y )vξ c,

(iv) (LXc J̃)Y c = ((LX φ)Y )c − ((LX η)Y )vξ v − ((LX η)Y )cξ c,

where X ,Y ∈ ℑ1
0(M), a tensor field φ ∈ ℑ1

1(M), a vector field ξ ∈ ℑ1
0(M) and a 1−form η ∈ ℑ0

1(M).

Proof. For J̃ = φc −ξ v ⊗ηv −ξ c ⊗ηc and η(Y ) = 0, we get

(i) (LXv J̃)Y v = LXv(φc −ξ v ⊗ηv −ξ c ⊗ηc)Y v − (φc −ξ v ⊗ηv −ξ c ⊗ηc)LXvY v

= LXv(φY )v −LXv(ηv(Y )v)ξ v −LXv(η(Y ))vξ c

= 0,
(ii) (LXv J̃)Y c = LXv(φc −ξ v ⊗ηv −ξ c ⊗ηc)Y c − (φc −ξ v ⊗ηv −ξ c ⊗ηc)LXvY c

= LXvφcY c −LXv(ηY )vξ v −LXv(η(Y ))cξ c −φc(LXY )v
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+ηv(LXY )vξ v +(η(LXY ))vξ c

= (LXvφc)Y c +φc(LXvY c)−φc(LXY )v +(LX (η(Y )))vξ c − ((LX η)Y )vξ c

= (LX φ)Y )v − ((LX η)Y )vξ c,

(iii) (LXc J̃)Y v = LXc(φc −ξ v ⊗ηv −ξ c ⊗ηc)Y v − (φc −ξ v ⊗ηv −ξ c ⊗ηc)LXcY v

= LXcφcY v −LXc(ηv(Y )v)ξ v −LXc(η(Y ))vξ c −φcLXcY v

+ηv(LXY )vξ v +(η(LXY ))vξ c

= (LXcφc)Y v +φc(LXcY v)−φcLXcY v +(LX (η(Y )))vξ c − (LX η)Y )vξ c

= (LX φ)Y )v − ((LX η)Y )vξ c,

(iv) (LXc J̃)Y c = LXc(φc −ξ v ⊗ηv −ξ c ⊗ηc)Y c − (φc −ξ v ⊗ηv −ξ c ⊗ηc)LXcY c

= LXcφcY c −LXc((ηY )v)ξ v −LXc(η(Y ))cξ c −φcLXcY c

+(η(LXY ))vξ v +(η(LXY ))cξ c

= (LXcφc)Y c +φc(LXcY c)−φcLXcY c +(LX (η(Y )))vξ v − ((LX η)Y )vξ v

+(LX (η(Y )))cξ c − ((LX η)Y )cξ c

= (LX φ)Y )c − ((LX η)Y )vξ v − ((LX η)Y )cξ c.

Corollary 2. If we put Y = ξ , i.e. η(ξ ) = 1 and ξ has the conditions of (23), then we have

(i) (LXv J̃)ξ v =−(LX ξ )v,

(ii) (LXv J̃)ξ c = ((LX φ)ξ )v − (((LX η))ξ )vξ c,

(iii) (LXc J̃)ξ v = ((LX φ)ξ )v − (LX ξ )c − ((LX η)ξ )vξ c,

(iv) (LXc J̃)ξ c = (LX φ)ξ )c − (LX ξ )v − ((LX η)ξ )vξ v − ((LX η)ξ )cξ c.
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