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Abstract: In this paper, we consider the idea of Mannheim partner curves for curves lying on surfaces. By considering the Darboux
frames of surface curves, we define Mannheim partner D-curves and give the characterizations for these curves. We also find the
relations between geodesic curvatures, normal curvatures and geodesic torsions of these associated curves. Furthermore, we show that
definition and characterizations of Mannheim partner D-curves include those of Mannheim partner curves in some special cases.
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1. Introduction
Associated curves, the curves for which at the corresponding points of curves one of the Frenet vectors of a curve
coincides with the one of the Frenet vectors of other curve, are very interesting study and an important problem of the
fundamental curve theory and characterizations of space curves. The well-known of such curves is Bertrand curve which
is characterized as a kind of corresponding relation between the two curves. The relation is that the principal normal of a
curve is the principal normal of another curve i.e, the Bertrand curve is a curve which shares the normal line with another
curve. Over years many mathematicians have studied on Bertrand curves in different spaces and consider the properties
of these curves[1-5,15]. Moreover, Ravani and Ku consider the notion of Bertrand curves for ruled surfaces and defined
Bertrand offsets of ruled surfaces [12].

Recently, a new definition of the associated curves was given by Liu and Wang [9,14]. They called these new curves as
Mannheim partner curves: Let x and x1 be two curves in the three dimensional Euclidean E3. If there exists a
corresponding relationship between the space curves x and x1 such that, at the corresponding points of the curves, the
principal normal lines of x coincides with the binormal lines of x1, then x is called a Mannheim curve, and x1 is called a
Mannheim partner curve of x. The pair {x,x1} is said to be a Mannheim pair. They showed that a curve x1(s1) is a
Mannheim partner curve of the curve x(s) if and only if the curvature κ1 and the torsion τ1 of x1(s1) satisfy the following
equation for some non-zero constant λ .

τ̇ =
dτ
ds1

=
κ1

λ
(1+λ 2τ2

1 )

Mannheim partner curves have been studied in Minkowski 3-space by Kahraman et al [8]. Similar to the Bertrand
offsets, Orbay, Kasap and Aydemir have defined and characterized the Mannheim offsets of ruled surfaces [11]. The
corresponding characterizations of the Mannheim offsets of timelike and spacelike ruled surfaces in Minkowski 3-space
have been given by Önder and Uğurlu [6,7].
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25 M.Kazaz, H. H. Uğurlu, M. Önder and T. Kahraman: Mannheim partner D-curves in the Euclidean 3-space E3

In this paper we consider the notion of Mannheim partner curve for the curves lying on different surfaces. We call these
new associated curves as Mannheim partner D-curves and by using the Darboux frame of curves we give definition and
characterizations of these curves.

2. Darboux Frame of a Curve Lying on a Surface
Let S be an oriented surface in 3-dimensional Euclidean space E3 and let consider a curve x(s) lying on S entirely where
s is the arclength of x(s). Since the curve x(s) is also in space, there exists a Frenet frame {T,N,B} at each points of the
curve where T is unit tangent vector, N is principal normal vector and B is binormal vector, respectively. The Frenet
equations of the curve x(s) is given by

T′ = κN
N′ =−κT+ τB
B′ =−τN

where κ and τ are curvature and torsion of the curve x(s), respectively and ( ’ ) denotes the derivative with respect to s
[10,13].

Since the curve x(s) lies on the surface S there exists another frame of the curve x(s) which is called Darboux frame and
denoted by {T,g,n}. In this frame T is the unit tangent of the curve, n is the unit normal of the surface Salong the curve
and g is a unit vector given by g = n×T. Since the unit tangent T is common in both Frenet frame and Darboux frame,
the vectors N, B, g and n lie on the same plane. Then the relations between these frames can be given as followsT

g
n

=

1 0 0
0 cosφ sinφ
0 − sinφ cosφ


T

N
B

 ,
where φ is the angle between the vectors g and N. The derivative formulae of the Darboux frame is

.−→
T
.−→g
.−→n

=

 0 kg kn

−kg 0 τg

−kn −τg 0



−→
T
−→g
−→n

 (1)

where kg, kn and τg are called the geodesic curvature, the normal curvature and the geodesic torsion, respectively. Here
and in the following, we use “dot” to denote the derivative with respect to the arc length parameter of a curve [10].

The relations between geodesic curvature, normal curvature, geodesic torsion and κ , τ are given as follows

kg = κ cosφ , kn = κ sinφ, τg = τ +
dφ
ds

. (2)

Furthermore, the geodesic curvature kg and geodesic torsion τg of the curve x(s) can be calculated as follows

kg =

⟨
dx
ds

,
d2x
ds2 ×n

⟩
, τg =

⟨
dx
ds

, n× dn
ds

⟩
(3)

In the differential geometry of surfaces, for a curve x(s)lying on a surface S the followings are well-known
(i) x(s) is a geodesic curve ⇔ kg = 0,
(ii) x(s) is an asymptotic line ⇔ kn = 0,
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(iii) x(s) is a principal line ⇔ τg = 0 [10].

Through every point of the surface passes a geodesic in every direction. A geodesic is uniquely determined by an initial
point and the tangent at that point. All straight lines on a surface are geodesics. Along all curved geodesics the principal
normal coincides with the surface normal. Along asymptotic lines osculating planes and tangent planes coincide, along
geodesics they are normal. Through a point of a nondevelopable surface pass two asymptotic lines which can be real or
imaginary [13].

3. Mannheim Partner D-Curves in Euclidean 3-space E3

In this section, by considering the Darboux frame, we define Mannheim partner D-curves and give the characterizations
of these curves.

Definition 1. Let S and S1 be oriented surfaces in 3-dimensional Euclidean space E3 and let consider the arc-length
parameter curves x(s) and x1(s1) lying fully on S and S1, respectively. Denote the Darboux frames of x(s) and x1(s1) by
{T,g,n} and {T1,g1,n1}, respectively. If there exists a corresponding relationship between the curves x and x1 such that,
at the corresponding points of the curves, the Darboux frame element g of x coincides with the Darboux frame element
n1 of x1, i.e., the vectors g and n1 lie on a line, then x is called a Mannheim D-curve, and x1 is a Mannheim partner
D-curve of x. Then, the pair {x,x1} is said to be a Mannheim D-pair. If there exist such curves lying on the oriented
surfaces S and S1, respectively, we call the pair {S,S1} as Mannheim surface pair.

Fig. 1: Mannheim partner D-curves

Theorem 1. Let S be an oriented surface and x(s) be a Mannheim D-curve in E3 with arc length parameter s fully lying
on S. If S1 is another oriented surface and x1(s1) is a curve with arc length parameter s1 fully lying on S1, then x1(s1) is
Mannheim partner D-curve of x(s) if and only if the following equality holds for some nonzero constants λ ,

−λ τ̇g1 =

(
(1−λkn1)

2 +λ 2τ2
g1

(1−λkn1)

)(
λkn1 −1

cosθ
kn − kg1

)
+

λ 2τg1 k̇n1

1−λkn1
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where θ is the angle between the tangent vectors T and T1 at the corresponding points of x and x1.

Proof: Suppose that S is an oriented surface and x(s)is a Mannheim D-curve fully lying on S. Denote the Darboux
frames of x(s) and x1(s1) by {T,g,n} and {T1,g1,n1}, respectively. Then by the definition we can assume that

x(s1) = x1(s1)+λ (s1)n1(s1) (4)

for a smooth function λ (s1). By taking derivative of (4) with respect to s1 and applying the Darboux formulae (1) we have

T
ds
ds1

= (1−λkn1)T1 + λ̇n1 −λτg1g1 (5)

Since the direction of n1 coincides with the direction of g, we get

λ̇ (s1) = 0.

This means that λ is a nonzero constant and equality (5) becomes

T
ds
ds1

= (1−λkn1)T1 −λτg1g1 (6)

On the other hand we have

T = cosθT1 + sinθg1 (7)

where θ is the angle between the tangent vectors T and T1 at the corresponding points of x and x1. Differentiating (7)
with respect to s1, it follows

(kgg+ knn)
ds
ds1

=−(θ̇ + kg1)sinθT1 +(θ̇ + kg1)cosθg1 +(kn1 cosθ + τg1 sinθ)n1 (8)

From this equation and the fact that

n = sinθT1 − cosθg1 (9)

we get

(kn sinθT1 − kn cosθg1 + kgg) ds
ds1

=−(θ̇ + kg1)sinθT1 +(θ̇ + kg1)cosθg1

+(kn1 cosθ + τg1 sinθ)n1
(10)

Since the direction of n1 is coincident with g we have

θ̇ =−
(

kn
ds
ds1

+ kg1

)
(11)

Using (6), (7) and the fact that T1 is orthogonal to g1, we obtain

ds
ds1

=
1−λkn1

cosθ
=−

λτg1

sinθ
(12)

Equality (12) gives us

tanθ =−
λτg1

1−λkn1

(13)
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By taking the derivative of this equation and applying (11) we get

−λ τ̇g1 =

(
(1−λkn1)

2 +λ 2τ2
g1

(1−λkn1)

)(
λkn1 −1

cosθ
kn − kg1

)
+

λ 2τg1 k̇n1

1−λkn1

(14)

that is desired.

Conversely, assume that equation (14) holds for some nonzero constants λ . From (14) we have

−kn

(
ds
ds1

)3

=−λ τ̇g1(1−λkn1)−λ 2τg1 k̇n1 +
(
(1−λkn1)

2 +λ 2τ2
g1

)
kg1 (15)

Let define a curve

x(s1) = x1(s1)+λn1(s1) (16)

where λ is a non-zero constant. We will prove that x is a Mannheim D-curve and x1 is the Mannheim partner D-curve of
x. By taking the derivative of (16) with respect to s1 twice, we get

T
ds
ds1

= (1−λkn1)T1 −λτg1g1 (17)

and

(kgg+ knn)
(

ds
ds1

)2
+T d2s

ds2
1
= (−λ k̇n1 +λτg1kg1)T1 +((1−λkn1)kg1 −λ τ̇g1)g1

+
(
(1−λkn1)kn1 −λτ2

g1

)
n1

(18)

respectively. Taking the cross product of (17) with (18) we have

[kgn− kng]
(

ds
ds1

)3
=
(
−λτg1kn1(1−λkn1)+λ 2τ3

g1

)
T1 −

(
(1−λkn1)

2kn1 −λτ2
g1
(1−λkn1)

)
g1

+
(

kg1(1−λkn1)
2 −λ τ̇g1

(1−λkn1)−λ 2τg1
k̇n1 +λ 2τ2

g1
kg1

)
n1

(19)

By substituting (15) in (19) we get

[kgn− kng]
(

ds
ds1

)3
=
(
−λτg1kn1(1−λkn1)+λ 2τ3

g1

)
T1

−
(

kn1(1−λkn1)
2 −λτ2

g1
(1−λkn1)

)
g1 − kn

(
ds
ds1

)3
n1

(20)

Taking the cross product of (17) with (20) we have

− [kgg+ knn]
(

ds
ds1

)4
= kn

(
ds
ds1

)3
λτg1T1 + kn

(
ds
ds1

)3
(1−λkn1)g1

+
(
(1−λkn1)

2 +λ 2τ2
g1

)(
λτ2

g1
− kn1(1−λkn1)

)
n1

(21)

From (20) and (21) we have

(
k2

g + k2
n
)( ds

ds1

)4
n =

[
kg

ds
ds1

(
−λτg1kn1(1−λkn1)+λ 2τ3

g1

)
−λτg1k2

n

(
ds
ds1

)3
]

T1

−
[

kg
ds
ds1

(
kn1(1−λkn1)

2 −λτ2
g1
(1−λkn1)

)
+(1−λkn1)k

2
n

(
ds
ds1

)3
]

g1

−
[

knkg

(
ds
ds1

)4
+ kn

(
(1−λkn1)

2 +λ 2τ2
g1

)(
λτ2

g1
− kn1(1−λkn1)

)]
n1

(22)
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Furthermore, from (17) and (20) we get 
(

ds
ds1

)2
= (1−λkn1)

2 +λ 2τ2
g1
,

kg

(
ds
ds1

)2
= kn1(1−λkn1)−λτ2

g1
,

(23)

respectively. Substituting (23) in (22) we obtain

(
k2

g + k2
n
)( ds

ds1

)4
n =

[
kg

ds
ds1

(
−λτg1kn1(1−λkn1)+λ 2τ3

g1

)
−λτg1k2

n

(
ds
ds1

)3
]

T1

−
[

kg
ds
ds1

(
kn1(1−λkn1)

2 −λτ2
g1
(1−λkn1)

)
+(1−λkn1)k

2
n

(
ds
ds1

)3
]

g1

(24)

Equality (17) and (24) shows that the vectors T and n lie on the plane sp{T1,g1}. So, at the corresponding points of the
curves, the Darboux frame element g of x coincides with the Darboux frame element n1 of x1, i.e, the curves x and x1 are
Mannheim partner D-curves.

Let now give the characterizations of Mannheim partner D-curves in some special cases. Assume that x(s) is an
asymptotic line. Then, from (14) we have the following special cases:

(i) Consider that x1(s1) is a geodesic curve. Then x1(s1) is Mannheim partner D-curve of x(s)if and only if the following
equation holds,

τ̇g1 =−
λτg1 k̇n1

1−λkn1

.

(ii) Assume that x1(s1) is also an asymptotic line. Then x1(s1) is Mannheim partner D-curve of x(s)if and only if the
geodesic curvature kg1and the geodesic torsion τg1 of x1(s1) satisfy the following equation,

λ τ̇g1 = (1+λ 2τ2
g1
)kg1 .

In this case, the Frenet frame of the curve x1(s1) coincides with its Darboux frame. From (2) we have kg1 = κ1 and
τg1 = τ1. So, the Mannheim partner D-curves become the Mannheim partner curves, i.e., if both x(s) and x1(s1) are
asymptotic lines. Then, the definition and the characterizations of the Mannheim partner D-curves involve those of the
Mannheim partner curves in Euclidean 3-space.

(iii) If x1(s1) is a principal line then x1(s1) is Mannheim partner D-curve of x(s) if and only if either the geodesic
curvature kg1 = 0 i.e, x1(s1) is also a geodesic curve or kn1 = 1/λ = const.

Proposition 1. Let the pair {x,x1} be a Mannheim D-pair. Then the relation between geodesic curvature kg, geodesic
torsion τg of x(s) and the normal curvature kn1 , the geodesic torsion τg1 of x1(s1) is given as follows

kg − kn1 = λ (kgkn1 − τgτg1).

Proof: Let x(s)be a Mannheim D-curve and x1(s1) be a Mannheim partner D-curve of x(s). Then from (16) we can write

x1(s1) = x(s1)−λn1(s1) (25)
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for some constants λ . By differentiating (25) with respect to s1 we have

T1 = (1+λkg)
ds
ds1

T−λτg
ds
ds1

n (26)

Since

T1 = cosθT+ sinθn (27)

from (26) and (27) we obtain

cosθ = (1+λkg)
ds
ds1

, sinθ =−λτg
ds
ds1

. (28)

Using (12) and (28) it is easily seen that

kg − kn1 = λ (kgkn1 − τgτg1).

From Proposition 1, we obtain the following special cases.

Let the pair {x,x1}be a Mannheim D-pair. Then,
(i) if x1 is an asymptotic line, then kg =−λτgτg1 .
(ii) if x1 is a principal line, then kg − kn1 = λkgkn1 .
(iii) if x is a geodesic curve, then kn1 = λτgτg1 .
(iv) if x is a principal line then kg − kn1 = λkgkn1 .

Theorem 2. Let {x,x1} be Mannheim D-pair. Then the following relations hold:

(i) kg1 =−
(

kn
ds
ds1

+ dθ
ds1

)
(ii) τg

ds
ds1

=−kn1 sinθ + τg1 cosθ
(iii) kg

ds
ds1

= kn1 cosθ + τg1 sinθ
(iv) τg1 = (kg sinθ + τg cosθ) ds

ds1

Proof: (i) By differentiating the equation ⟨T,T1⟩= cosθ with respect to s1 we have⟨
(kgg+ knn)

ds
ds1

,T1

⟩
+
⟨
T,kg1g1 + kn1 n1

⟩
=−sinθ

dθ
ds1

.

Using the fact that the direction of n1 coincides with the direction of g and{
T1 = cosθT+ sinθn,
g1 = sinθT− cosθn,

(29)

we easily get that

kg1 =−
(

kn
ds
ds1

+
dθ
ds1

)
.

(ii) By differentiating the equation ⟨n,n1⟩= 0 with respect to s1 we have⟨
(−knT− τgg)

ds
ds1

,n1

⟩
+
⟨
n,−kn1 T1 − τg1g1

⟩
= 0.
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By (29) we obtain

τg
ds
ds1

=−kn1 sinθ + τg1 cosθ .

(iii) By differentiating the equation ⟨T,n1⟩= 0 with respect to s1 we get⟨
(kgg+ knn)

ds
ds1

,n1

⟩
+
⟨
T,−kn1 T1 − τg1g1

⟩
= 0.

From (29) it follows that

kg
ds
ds1

= kn1 cosθ + τg1 sinθ .

(iv) By differentiating the equation ⟨g,g1⟩= 0 with respect to s1 we obtain⟨
(−kgT+ τgn)

ds
ds1

,g1

⟩
+
⟨
g,−kg1 T1 + τg1n1

⟩
= 0.

By considering (29) we get

τg1 = (kg sinθ + τg cosθ)
ds
ds1

.

Let now x be a Mannheim D-curve and x1 be a Mannheim partner D-curve of x. From the first equation of (3) it follows

kg1 =
⟨ .−→x1 ,

..−→x1 ,×−→n1

⟩
=
⟨ .−→x1 ,

..−→x1 ,×−→g1

⟩
=
(

ds
ds1

)3(
−kn(1+λkg)

2 −λ 2τ2
g kn

)
+
(

ds
ds1

)2 (
λ τ̇g(1+λkg)−λ 2τgk̇g

) (30)

Then the relations between the geodesic curvature kg1 of x1(s1) and the geodesic curvature kg, the normal curvature knand
the geodesic torsion τgof x(s)are given as follows:

(1) If kg = 0 then from (30) the geodesic curvature kg1 of x1(s1) is

kg1 =−
(

ds
ds1

)3

(1+λ 2τ2
g )kn +

(
ds
ds1

)2

λ τ̇g (31)

(2) If kn = 0 then the relation between kg, τg and kg1 is

kg1 = λ
(

ds
ds1

)2 (
τ̇g(1+λkg)−λτgk̇g

)
(32)

(3) If τg = 0 then, for the geodesic curvature kg1 , we have

kg1 =−
(

ds
ds1

)3

(1+λkg)
2kn (33)

From (31), (32) and (33) we give the following corollary.

Corollary 1. Let x be a Mannheim D-curve and x1 be a Mannheim partner D-curve of x. Then the relations between the
geodesic curvature kg1 of x1(s1) and the geodesic curvature kg, the normal curvature kn and the geodesic torsion τgof
x(s)are given as follows,

(i) If x is a geodesic curve, then the geodesic curvature kg1 of x1(s1) is
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kg1 =−
(

ds
ds1

)3

(1+λ 2τ2
g )kn +

(
ds
ds1

)2

λ τ̇g.

(ii) If x is an asymptotic line, then the equation of kg1 is

kg1 = λ
(

ds
ds1

)2 (
τ̇g(1+λkg)−λτgk̇g

)
.

(iii) If x is a principal line, then the geodesic curvature kg1of x1(s1) is

kg1 =−
(

ds
ds1

)3

(1+λkg)
2kn.

Similarly, From the second equation of (3) and by using the fact that g is coincident with n1, the relation between the
geodesic torsion τg1of x1(s1) and the geodesic torsion τgof x(s) is given by

τg1 =

(
ds
ds1

)2

τg (34)

Furthermore, by using (12), from (34) we have

τgτg1 =
sin2θ

λ 2 (35)

Then, from (34) and (35) we can give the following corollary.

Corollary 2. Let x be a Mannheim D-curve and x1 be a Mannheim partner D-curve of x. Then the relation between the
geodesic torsion τg1of x1(s1) and the geodesic torsion τg of x(s)is given by one of the followings,

τg1 =

(
ds
ds1

)2

τg or τgτg1 =
sin2θ

λ 2

and so, the Mannheim partner D-curve x1 is a principal line when the Mannheim D-curve x is a principal line.

Similarly, from (12) and (34) we get

τg

τg1

=
cos2θ

(1−λkn1)
2

Then, if x1(s1) is an asymptotic curve, i.e.,kn1 = 0, we have

τg = cos2θτg1 (36)

From (36) we have the following corollary.

Corollary 3. Let x be a Mannheim D-curve and x1 be a Mannheim partner D-curve of x. If x1(s1) is an asymptotic curve
then the relation between the geodesic torsion τg of x(s) and the geodesic torsion τg1of x1(s1) is given as follows,

τg = cos2θτg1
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where θ is the angle between the tangent vectors T and T1 at the corresponding points of x and x1.

Example 1. Let consider the great circle x(θ) = (cosθ , sinθ , 0) on the unit sphere
S(θ ,φ) = (cosθ sinφ,sinθ sinφ, cosφ). The Mannheim partner D-curve of x(θ) is the curve x1(θ) = (cosθ , sinθ , λ ),
where λ is a non-zero constant, and the curve x1(θ) lies on a ruled surface given by
S1(θ ,v) = (cosθ , sinθ ,λ ) + v(−sinθ ,cosθ ,0)which is the surface of the tangents of the curve x1(θ). Then the pair
{x,x1} is a Mannheim D-pair (Fig. 2).

Fig. 2

Example 2. Let consider the helix curve given by x(θ) = (cosθ , sinθ , θ) on the right cylinder
S(θ ,φ) = (cosθ , sinθ , φ). The Mannheim partner D-curve of x(θ) is the curve

x1(θ) =
(

cosθ +
λ√

2
sinθ , sinθ − λ√

2
cosθ , θ +

λ√
2

)
,

where λ is a non-zero constant, and the curve x1(θ) lies on a helicoid surface given by

S1(θ ,v) =
(

cosθ +
λ√

2
sinθ +avcosθ , sinθ − λ√

2
cosθ +avsinθ , θ +

λ√
2

)
where a is a non-zero constant. Then the pair {x,x1} is Mannheim D-pair (Fig. 3).
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Fig. 3

4. Conclusions
In this paper, the definition and characterizations of Mannheim partner D-curves are given which is a new study of
associated curves lying on surfaces. It is shown that the definition and the characterizations of Mannheim partner D-
curves include those of Mannheim partner curves in some special cases. Furthermore, the relations between the geodesic
curvature, the normal curvature and the geodesic torsion of these curves are given.
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