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Abstract: In this paper, a numerical method is presented to obtain approximate solutions for the system of nonlinear delay integro-
differential equations derived from considering biological species living together. This method is essentially based on the truncated
Taylor series and its matrix representations with collocation points. Also, to illustrate the pertinent features of the method examples are
presented and results are compared to the Adomian decomposition method, the variational iteration method, pseudospectral Legendre
method. All numerical computations have been performed on the computer algebraic system Maple 15.
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1 Introduction

In science and engineering some important problems can usually be modeled to a system of integral and
integro-differential equations (IDE). IDEs and their systems play significant role in biology, ecology, medicine, physics
such as population growth, one dimensional viscoelasticity, electro magnetic theory and reactor dynamics [1]-[6]. Since
few of these equations can be solved explicitly, it is needed to develop the numerical techniques to solve IDEs and their
systems [7,8]. This paper is concerned with the dynamic of two interacting species which was first modeled by Volterra
[9]. It is considered two separate species with numbers y1(t) and y2(t) at time t where first species increases and second
one decreases. If they are put together, assuming that the second species will feed on the first, there will be increase in
the rate of the second species dy2

dt which depends not only on the present population y1(t) but also on all previous values
of the first species. When a steady-state condition or equilibrium is reached between these two species, it is described by
the following system of nonlinear delay Volterra integro-differential equations:

dy1
dt = y1(t)

[
h1 − γ1y2(t)−

t∫
t−T0

f1(t − τ)y2(τ)dτ

]
+g1(t)

dy2
dt = y2(t)

[
−h2 + γ2y1(t)+

t∫
t−T0

f2(t − τ)y1(τ)dτ

]
+g2(t)

(1)

where h1,γ1,h2,γ2 > 0, 0 ≤ t ≤ b with initial conditions

y1(0) = α1, y2(0) = α2 (2)
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where h1 and −h2 are coefficients of increase and decrease of the first and the second species, respectively. The
parameters f1, f2,g1 and g2 are given functions while y1 and y2 are unknown functions and T0 ∈ R is assumed to be the
finite heredity duration of both species [10].

Up to now, Adomian decomposition method (ADM) [11], rational Chebyshev tau method (CTM)[12], variational
iteration method (VIM), pseudospectal Legendre method (PLM) [13] and Legendre multiwavelet method (LVM) [14]
have been used to solve the model (1)-(2).

The main purpose of this study is to solve equations (1)-(2) using the Taylor matrix method. Since the beginning of 1994,
Taylor, Chebyshev, Legendre, Laguerre, Hermite and Bessel collocation and matrix methods have been used by Sezer et
al.[15]-[25] to solve differential, difference, integral , integro-differential, delay differential equations and their systems.
In this article, by modifying and developing matrix and collocation methods studied in [15,17,20], we will find the
approximate solutions of the system (1)-(2) in the truncated Taylor series form

yi(t) =
N

∑
n=0

yi,ntn, yi,n =
yi
(n)(0)
n!

, i = 1,2, 0 ≤ t ≤ b (3)

where yi,n, (n = 0,1, . . . ,N, i = 1,2) are unknown coefficients to be determined.

2 Fundamental relations

Let us consider the system of nonlinear Volterra integro-differential equations in the form (1) and find matrix
representations of each term in the system. First we convert the solution defined by (3) and its first derivative, for
n = 0,1, . . . ,N to the following matrix forms:

yi(t) = T(t)Yi, i = 1,2 (4)

yi
′(t) = T(t)BYi, i = 1,2 (5)

where

T(t) =
[
1 t t2 . . . tN

]
, B =



0 1 0 0 . . . 0
0 0 2 0 . . . 0
0 0 0 3 . . . 0
...

...
...

...
...

...
0 0 0 0 . . . N
0 0 0 0 . . . 0


.

Yi =
[
yi,0 yi,1 yi,2 . . . yi,N

]T
.

On the other hand, we can write the matrix forms of the expressions y1(t)y2(t), y1(t)y2(τ) and y1(τ)y2(t) as, respectively,
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y1(t)y2(t) = T(t)T∗(t)Y1 (6)

= T(t)T∗(t)Y2,

y1(t)y2(τ) = T(τ)T∗(t)Y1 (7)

and
y1(τ)y2(t) = T(τ)T∗(t)Y2 (8)

where

T∗(t) =



T(t) 0 . . . 0
0 T(t) . . . 0
...

...
. . .

...
0 0 . . . T(t)


(N+1)×(N+1)2

,

Y1 =
[
y2,0Y1 y2,1Y1 . . . y2,NY1

]T

(N+1)2×1
,

Y2 =
[
y1,0Y2 y1,1Y2 . . . y1,NY2

]T

(N+1)2×1
.

Now, we convert the kernel functions

K1(t,τ) = f1(t − τ) and K2(t,τ) = f2(t − τ)

to the matrix forms, by means of following procedure.
The functions K1 = f1 and K2 = f2 can be expressed by the truncated Taylor series, respectively,

K1(t,τ) =
N

∑
m=0

N

∑
n=0

k1
m,ntmτn (9)

K2(t,τ) =
N

∑
m=0

N

∑
n=0

k2
m,ntmτn (10)

where

ki
m,n =

1
m!n!

∂ m+nKi(0,0)
∂ tm∂τn , m,n = 0,1, . . . ,N, i = 1,2.

The expressions (9) and (10) can be written in the matrix forms

K1(t,τ) = T(t)K1TT (τ), K1 =
[
k1

m,n
]
, m,n = 0,1, . . . ,N. (11)

K2(t,τ) = T(t)K2TT (τ), K2 =
[
k2

m,n
]
, m,n = 0,1, . . . ,N. (12)
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where
T(t) =

[
1 t t2 . . . tN

]
.

So that Ki =
[
ki

m,n
]
, m,n = 0,1, . . . ,N, i = 1,2 are the Taylor coefficients matrices of functions

Ki(t,τ) = fi(t − τ), i = 1,2 at point (0,0).

For example, in case N = 2, the matrix K1 becomes

K1 =

 f1(0) − f (1)1 (0) f (2)1 (0)

f (1)1 (0) − f (2)1 (0) f (3)1 (0)

f (2)1 (0) − f (3)1 (0) f (4)1 (0)


where

k1
0,0 =

1
0!0!

K1(0,0) = f1(0), k1
0,1 =

1
0!1!

∂K1(0,0)
∂τ

=− f (1)1 (0),

k1
0,2 =

1
0!2!

∂ 2K1(0,0)
∂τ2 = f (2)1 (0), k1

1,0 =
1

1!0!
∂K1(0,0)

∂ t
= f (1)1 (0),

k1
1,1 =

1
1!1!

∂ 2K1(0,0)
∂ t∂τ

=− f (2)1 (0), k1
1,2 =

1
1!2!

∂ 3K1(0,0)
∂ t∂τ2 = f (3)1 (0),

k1
2,0 =

1
2!0!

∂ 2K1(0,0)
∂ t2 = f (2)1 (0), k1

2,1 =
1

2!1!
∂ 3K1(0,0)

∂ t2∂τ
=− f (3)1 (0),

k1
2,2 =

1
2!2!

∂ 4K1(0,0)
∂ t2∂τ2 = f (4)1 (0).

3 Fundamental matrix equations for the system

We now ready to construct the fundamental matrix equations for the system of nonlinear delay integro-differential
equations (1). For this purpose, substituting the matrix relations (4)-(8), (11) and (12) into system (1) and simplifying,
we obtain the two matrix equations.

T(t)BY1 = h1T(t)Y1 − γ1T(t)T∗(t)Y1 −
t∫

t−T0

T(t)K1TT (τ)T(τ)T∗(t)Y1 dτ +g1(t)

and

T(t)BY2 =−h2T(t)Y2 + γ2T(t)T∗(t)Y2 +

t∫
t−T0

T(t)K2TT (τ)T(τ)T∗(t)Y2 dτ +g2(t)

or the system {
T (t)B−h1T (t))Y 1+(γ1T (t)T ∗(t)+T (t)K1Q(t)T ∗(t))Y1= g1(t)
T (t)B+h2T (t))Y 2+(−γ2T (t)T ∗(t)−T (t)K2Q(t)T ∗(t))Y2= g2(t)

(13)

where

Q(t) =
t∫

t−T0

TT (τ)T(τ)dτ = [qm,n(t)] , m,n = 0,1, ...,N,
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[qm,n(t)] =
tm+n+1 − (t −T0)

m+n+1

m+n+1
, m,n = 0,1, ...,N.

Therefore, we can write the matrix representation of the system (13) in the form{
D1(t)Y1 +A1(t)Y1 = g1(t)
D2(t)Y2 +A2(t)Y2 = g2(t)

(14)

where
D1(t) = T(t)B−h1T(t),

A1(t) = γ1T(t)T∗(t)+T(t)K1Q(t)T∗(t),

D2(t) = T(t)B+h2T(t)

and
A2(t) =−γ2T(t)T∗(t)−T(t)K2Q(t)T∗(t).

Consequently, the fundamental matrix equations of the system (14) can be written in the following compact form

D(t)Y+A(t)Y = G(t) (15)

where

D(t) =

D1(t) 0
0 D2(t)


2×2(N+1)

, Y =

[
Y1

Y2

]
2(N+1)×1

, G(t) =

[
g1(t)
g2(t)

]
2×1

,

A(t) =

A1(t) 0
0 A2(t)


2×2(N+1)2

, Y =

[
Y1

Y2

]
2(N+1)2×1

.

4 Taylor matrix-collocation method

In this section, by substituting the collocation points defined by

ts =
b
N

s, s = 0,1, ...,N,

into the fundamental matrix equation (15), we obtain the new system

D(ts)Y+A(ts)Y = G(ts), s = 0,1, . . . ,N (16)

and therefore, the new fundamental matrix equation

DY∗+AY = G (17)
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where

D =



D(t0) 0 . . . 0
0 D(t1) . . . 0
...

...
. . .

...
0 0 . . . D(tN)


2(N+1)×2(N+1)2

, Y∗ =


Y
Y
...
Y


2(N+1)2×1

,

A =



A(t0) 0 . . . 0
0 A(t1) . . . 0
...

...
. . .

...
0 0 . . . A(tN)


2(N+1)×2(N+1)3

, Y =


Y
Y
...
Y


2(N+1)3×1

.

By using equation(4), we obtain the matrix forms of the conditions as

T(0)Y1 = α1 (18)

and
T(0)Y2 = α2. (19)

By replacing the row matrices (18) and (19) by two rows of the matrix equation (17), we have the matrix equation based
on the conditions. Thus, the fundamental matrix equation of the system (1) under initial conditions (2) corresponds to a
system of 2(N +1) nonlinear algebraic equations with the unknown coefficients y1,n and y2,n, (n = 0,1, . . . ,N).

Finally, the unknown coefficients are computed by solving this system and they are substituted in equation (3). Hence, the
Taylor polynomial solutions

yi,N(t) =
N

∑
n=0

yi,ntn , i = 1,2 (20)

can be obtained.

5 Accuracy of solutions

Accuracy of the approximate solutions are checked by substituting this solutions into the system (1); that is, for t ∈ [0,1],

E1,N(t) =

∣∣∣∣∣ dy1,N (t)
dt − y1,N(t)

[
h1 − γ1y2,N(t)−

t∫
t−T0

f1(t − τ)y2,N(τ)dτ

]
−g1(t)

∣∣∣∣∣
E2,N(t) =

∣∣∣∣∣ dy2,N(t)
dt − y2,N(t)

[
−h2 + γ2y1,N(t)+

t∫
t−T0

f2(t − τ)y2,N(τ)dτ

]
−g2(t)

∣∣∣∣∣
(21)

We expect that Ei,N(t) = 0 on collocation points. The closer yi(t)∼= yi,N(t) the closer Ei,N(t)∼= 0 for t ∈ [0,1].

6 Numerical examples

In this section, some numerical examples are given to illustrate the accuracy and efficiency of the presented method
(PM). The values of exact solutions yi(t), i = 1,2, and the absolute error functions ei,N(t) = |yi(t)− yi,N(t)| , i = 1,2, are
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Exact value The absolute
error obtained
by the VIM

The absolute
error obtained
by the ADM

The absolute
error obtained
by the PLM

The absolute
error obtained
by the Present Method
for N = 5

ti y1(ti) =−3ti +1 e1,5(ti)
0.1 0.7 0.31518853698e-3 0.1091753814113e-3 0.1986261648238e-12 0.1e-14
0.2 0.4 0.42728911642e-3 0.1788920829385e-3 0.3231153999959e-12 0
0.3 0.1 0.47331318020e-3 0.1083617853644e-3 0.3615806499154e-12 0.17e-14
0.4 -0.2 0.48554023324e-3 0.3094825605990e-3 0.3213172783951e-12 0.1e-14
0.5 -0.5 0.47436316821e-3 0.00135621442726 0.2096206492477e-12 0.2e-14
0.6 -0.8 0.44598126050e-3 0.00135621442726 0.3378612628621e-13 0.2e-14
0.7 -1.1 0.43682261124e-3 0.00637023644866 0.1988909266767e-12 0
0.8 -1.4 0.53581434761e-3 0.01046626665686 0.4811151458281e-12 0.1e-13
0.9 -1.7 0.91000161606e-3 0.01522647918089 0.8055911673554e-12 0.1e-13
1.0 -2.0 0.001829471578 0.01994495324168 0.1165023627445e-11 0

Table 1: Comparison of the absolute errors obtained by the VIM , the ADM, the PLM method and the present method for
y1(t) in Example 2.

Exact value The absolute
error obtained
by the VIM

The absolute
error obtained
by the ADM

The absolute
error obtained
by the PLM

The absolute
error obtained
by the Present Method
for N = 5

ti y2(ti) = ti2 − ti e2,5(ti)
0.1 -0.09 0.33411928037255e-4 0.75832265307973e-5 0.44685408802023e-13 0
0.2 -0.16 0.85452915051187e-4 0.13695925555615e-3 0.37454199426623e-13 0
0.3 -0.21 0.13335169483697e-3 0.76561773005442e-3 0.11098050333474e-13 0.1e-14
0.4 -0.24 0.17989583110958e-3 0.00275335330117 0.90378079241246e-13 0.1e-14
0.5 -0.25 0.22278054776309e-3 0.00763820604833 0.18979262605967e-12 0.2e-14
0.6 -0.24 0.23711636589643e-3 0.01773821505593 0.29874842955172e-12 0.1e-14
0.7 -0.21 0.16268898580501e-3 0.03615084131132 0.40665222848038e-12 0.3e-14
0.8 -0.16 0.10708347556534e-3 0.06669525870549 0.50291076160862e-12 0.3e-14
0.9 -0.09 0.73102416289476e-3 0.11388830112804 0.57693076769942e-12 0.37e-14
1.0 0 0.00190775600163 0.18307114572060 0.61811898551576e-12 0.4592130396e-14

Table 2: Comparison of the absolute errors obtained by the VIM , the ADM, the PLM method and the present method for
y2(t) in Example 2.

presented at selected points of the given interval. Results are shown with tables and figures. All of them were performed
on the computer using a program written in Maple 15.

Example 1. As the first example, consider the system (1)-(2) with
f1(t) = f2(t) = 1, h1 = h2 = 1, γ1 = γ2 = 1, T0 = 1, α1 = 0, α2 = 1, g1(t) = 1+ t and g2(t) = 3

2 − 2t. The exact
solutions of this system are in the following form y1(t) = t, y2(t) = 1. By applying the presented method in Section 4
for N = 2, we have the solutions ŷ1(t) = t, ŷ2(t) = 1 which are the exact solutions.

Example 2. [11], [13], [14] Now we consider the system (1)-(2) with
f1(t) = 1, f2(t) = t −1, h1 = 1, h2 = 2, γ1 =

1
3 , γ2 = 1,T0 =

1
2 , α1 = 1, α2 = 0, g1(t) =− 5

2 t3 + 49
12 t2 + 17

2 t − 23
6 ,

and g2(t) = 15
8 t3 − 1

4 t2 + 3
8 t −1. The exact solutions of this system are in the following form

y1(t) =−3t +1, y2(t) = t2 − t.

We obtain the approximate solutions by Taylor polynomials of the problem for N = 5,6,7. In Tables 1-2 and Figure 1, the
absolute errors obtained by the present method for N = 5 are compared with the results obtained by variational iteration
method [13], Adomian decomposition method and pseudospectral Legendre method [11]. It is seen from this tables and
figures that the present method is closer to exact solution than the other methods. Additionally in Tables 3-4 and Figure 2,
the absolute errors for the present method are shown for different values of N. These datas show that as N increases, than
the absolute errors decrease more rapidly.
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(a) For y1(t) (b) For y2(t)

Fig. 1: Comparison of the absolute errors obtained by different methods for y1(t) and y2(t) in Example 2.

Present Method
ti e1,5(ti) e1,6(ti) e1,7(ti)

0.1 0.1e-14 0.9e-15 0.2e-16
0.2 0 0.17e-14 0.1e-16
0.3 0.17e-14 0.24e-14 0.14e-16
0.4 0.1e-14 0.32e-14 0.1e-16
0.5 0.2e-14 0.39e-14 0.7e-16
0.6 0.2e-14 0.46e-14 0.6e-16
0.7 0 0.5e-14 0
0.8 0.1e-13 0.5e-14 0
0.9 0.1e-13 0.6e-14 0.1e-15
1.0 0 0.8e-14 0.1e-15

Table 3: The comparison of the absolute error functions e1,N(t) obtained by the present method for N = 5,6,7 in Example 2.

Present Method
ti e2,5(ti) e2,6(ti) e2,7(ti)

0.1 0 0.5e-16 0.2e-17
0.2 0 0.1e-15 0
0.3 0.1e-14 0.1e-15 0.1e-16
0.4 0.1e-14 0.1e-15 0.1e-16
0.5 0.2e-14 0 0.1e-16
0.6 0.1e-14 0.1e-15 0.2e-16
0.7 0.3e-14 0.1e-15 0.2e-16
0.8 0.3e-14 0.1e-15 0.3e-16
0.9 0.37e-14 0.23e-15 0.32e-16
1.0 0.4592130396e-14 0.524200101921e-15 0.824048308268e-16

Table 4: The comparison of the absolute error functions e2,N(t) obtained by the present method for N = 5,6,7 in Example 2.

Example 3. [13] In this example, we solve the system (1)-(2) with
f1(t) = 2t −3, f2(t) = t, h1 = h2 = 2, γ1 = γ2 = 1, T0 =

1
3 ,

α1 = α2 = 0, g1(t) = t2
(

2−3te−t − 7
2 e−t + 13

6 te
1
3−t + 22

9 e
1
3−t

)
−2t

and g2(t) = 1
648 e−t

(
324t3 −8t2 +325t +324

)
. y1(t) = t2, y2(t) = 1

2 te−t are the exact solutions of this system.

Using the procedure in section 4, we calculate the approximate solutions y1,N(t) and y2,N(t) for N = 7,8,9. The exact
solutions, absolute errors obtained by other methods and the present method are given in Tables 5-6 and Figure 3. On the
other hand, in Tables 7-8 and Figure 4, the absolute errors for the present method are shown for different values of N.
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(a) Error function e1,N(t) (b) Error function e2,N(t)

Fig. 2: Comparison of absolute error functions of Example 2 for N = 5,6,7.

The absolute
error obtained
by the VIM

The absolute
error obtained
by the ADM

The absolute
error obtained
by the PLM

The absolute
error obtained
by the Present Method
for N = 9

ti e1,9(ti)
0.1 0.45022739981e-9 0.1685348539268161e-5 0.102301896075768e-3 0.54621e-12
0.2 0.40721536988e-8 0.2561087051100586e-5 0.176153769775657e-3 0.103513e-11
0.3 0.47234385000e-7 0.3700245898130561e-4 0.229322565360404e-3 0.130287e-11
0.4 0.36479857182e-6 0.1882102487513748e-3 0.269575227090752e-3 0.15896e-11
0.5 0.20359558284e-5 0.6922368720978511e-3 0.304678699227443e-3 0.19494e-11
0.6 0.88059904333e-5 0.00207699931636 0.342399926031219e-3 0.23863e-11
0.7 0.31211009285e-4 0.00527714088699 0.390505851762824e-3 0.29375e-11
0.8 0.94446707722e-4 0.01179548204175 0.456763420682999e-3 0.35725e-11
0.9 0.25161861726e-3 0.02398306778480 0.548939577052489e-3 0.45035e-11
1.0 0.60400227331e-3 0.04515276541565 0.674801265132035e-3 0.8311e-11

Table 5: The comparison of the absolute errors obtained by the VIM , the ADM, the PLM method and the present method
for y1(t) in Example 3.

The absolute
error obtained
by the VIM

The absolute
error obtained
by the ADM

The absolute
error obtained
by the PLM

The absolute
error obtained
by the Present Method
for N = 9

ti e2,9(ti)
0.1 0.98098325907e-7 0.2531305741406212e-5 0.00176027644054 0.594778e-11
0.2 0.69336692832e-7 0.2128400908629757e-4 0.00220320442481 0.382128e-11
0.3 0.26970838007e-6 0.1502891420450681e-3 0.00191611272021 0.34042e-11
0.4 0.35540733734e-6 0.6290715880985509e-3 0.00133037513186 0.26107e-11
0.5 0.24947044039e-5 0.00189973140060 0.7399618486387920e-3 0.21271e-11
0.6 0.10872453004e-4 0.00469004735611 0.3178723165631683e-3 0.16516e-11
0.7 0.38522813611e-4 0.01007382241455 0.1306848384973053e-3 0.11407e-11
0.8 0.11488099653e-3 0.01950960742570 0.1514325199644534e-3 0.15007e-11
0.9 0.30092661745e-3 0.03487342272136 0.2709923394895036e-3 0.44028e-11
1.0 0.71128431455e-3 0.05840750457072 0.3081537298062764e-3 0.2518797e-9

Table 6: The comparison of the absolute errors obtained by the VIM , the ADM, the PLM method and the present method
for y2(t) in Example 3.

Additionally, in Table 9, the accuracy of solutions are stated. These results show that present method is closer to exact
solution than the other methods and if N increases, than the absolute errors decrease more rapidly.
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(a) For y1(t) (b) For y2(t)

Fig. 3: Comparison of the absolute errors obtained by different methods for y1(t) and y2(t) in Example 3.

Exact Solution Present method
ti y1(ti) =−ti2 e1,7(ti) e1,8(ti) e1,9(ti)

0.1 -0.01 0.5461790e-10 0.709735e-11 0.54621e-12
0.2 -0.04 0.14796565e-9 0.1432477e-10 0.103513e-11
0.3 -0.09 0.20549045e-9 0.1815547e-10 0.130287e-11
0.4 -0.16 0.2411574e-9 0.220830e-10 0.15896e-11
0.5 -0.25 0.3069964e-9 0.274994e-10 0.19494e-11
0.6 -0.36 0.4059928e-9 0.337797e-10 0.23863e-11
0.7 -0.49 0.4782768e-9 0.416153e-10 0.29375e-11
0.8 -0.64 0.5705779e-9 0.527492e-10 0.35725e-11
0.9 -0.81 0.12988953e-8 0.584030e-10 0.45035e-11
1.0 -1 0.4714350e-8 0.7797e-11 0.8311e-11

Table 7: The comparison of the absolute error functions e1,N(t) obtained by the present method for N = 7,8,9 in Example 3.

Exact Solution Present method
ti y2(t) = 1

2 te−t e2,7(ti) e2,8(ti) e2,9(ti)
0.1 0.04524187090180 0.434756143e-8 0.16058984e-9 0.594778e-11
0.2 0.08187307530780 0.349666241e-8 0.11001843e-9 0.382128e-11
0.3 0.11112273310226 0.21396338e-8 0.872505e-10 0.34042e-11
0.4 0.13406400920713 0.24005294e-8 0.784700e-10 0.26107e-11
0.5 0.15163266492816 0.15742853e-8 0.512789e-10 0.21271e-11
0.6 0.16464349082821 0.9457157e-9 0.553099e-10 0.16516e-11
0.7 0.17380485632699 0.24452969e-8 0.220715e-10 0.11407e-11
0.8 0.17973158564689 0.45216675e-8 0.405498e-10 0.15007e-11
0.9 0.18295634688327 0.408948078e-7 0.902790e-10 0.44028e-11
1.0 0.18393972058572 0.748574986e-7 0.60301322e-8 0.2518797e-9

Table 8: The comparison of the absolute error functions e2,N(t) obtained by the present method for N = 7,8,9 in Example 3.

Present method
ti E1,8(ti) E1,9(ti) E2,8(ti) E2,9(ti)
0 0 0 0

0.1 0.806584461e-10 0.255e-10 0.86000006e-9 0.6000517404e-10
0.2 0.719508141e-10 0.532e-10 0.47999997e-9 0.1999601427e-10
0.3 0.343505686e-9 0.220e-9 0.18000124e-9 0.2007735870e-10
0.4 0.364979109e-9 0.15e-9 0.5998097e-10 0.6059128040e-10
0.5 0.446603860e-9 0.16e-9 0.10015322e-9 0.1028384404e-9
0.6 0.48728944e-9 0.10e-9 0.26081783e-9 0.5009288648e-10
0.7 0.6897561e-9 0.39e-9 0.2767199e-9 0.905070594e-11
0.8 0.2655416e-9 0.21e-9 0.18906488e-8 0.1915105741e-9
0.9 0.449297e-9 0.2e-9 0.68306403e-8 0.1838402061e-9
1.0 0.781939e-8 0.7e-9 0.183328948e-6 0.8389655597e-8

Table 9: Accuracies of the solutions of Example 3 for N = 8,9.
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(a) Error function e1,N(t) (b) Error function e2,N(t)

Fig. 4: Comparison of the absolute errors functions in Example 3 for N = 7,8,9.

7 Conclusion

In this study, a new Taylor matrix-collocation method is proposed for numerical solutions of a model describing biological
species living together. It is observed from Figures and Tables that the method is a simple and powerful tool to obtain
the approximate solution. When the numerical experiments are analyzed and the results are compared, it is seen that,
the present method is quite effective. Additionally, if is increased, it can be seen that approximate solutions obtained by
the mentioned method are closed to the exact solutions. One of the considerable advantage of the method is founding
the approximate solutions very easily by using the computer program written in Maple 15. Shorter computation time
and lower operation count results in a reduction of cumulative truncation errors and improvement of overall accuracy. In
addition, the method can also be extended to other models in the future.
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