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Abstract: This paper deals with fuzzy goal programming approach teeshizzy linear bilevel integer programming problems with
fuzzy probabilistic constraints following Pareto distriton and Frechet distribution. In the proposed approa@waainance constrained
programming methodology is developed from the view poimhahaging those probabilistic constraints in a hybrid fuzayironment.

A method of defuzzification of fuzzy numbers using-cut has been adopted to reduce the problem into a linearebileteger
programming problem. The individual optimal value of thgaalive of each DM is found in isolation to construct the fymzembership
goals. Finally, fuzzy goal programming approach is usecthbewe maximum degree of each of the membership goals bymizimg
under deviational variables in the decision making envitent. To demonstrate the efficiency of the proposed appr@achmerical
example is provided.
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1 Introduction

The concept of Bilevel Programming Problem (BLPP) was ohticed by Candler and Townsley [1] in 1982. The BLPP
is considered as a hierarchical decision making problern wistructure of two levels in a highly conflicting decision
making situation. The executions of decisions are segaigndim upper level to lower levels. In BLPP, a decision maker
(DM) at the upper level is termed as the leader and the lowet s termed as the follower [2]. In the context of BLPP,
the decisions maintain a hierarchy from leader to the fadlovBLPPs have been successfully applied to various
hierarchical decision making situations such as traffiopilag [3], pricing and fare optimization in the airline irgtry

[4], management of hazardous materials [5], aluminum pctdn process [6], pollution control policy determination
[7], tax credits determination for biofuel producers [8ticing in competitive electricity markets [9], supply chai
planning [10], facility location [11], defense problem [l&hd so forth. Most of the developments on BLPPs are based
on vertex enumeration method [1] and transformation apgves [2] which are effective only for very simple types of
problems. The main pitfall of these methods is that the datimakers (DMs) have no cooperating attitude with each
other. So, these methods fail to give a decision acceptableoth the DMs. Also the above approaches give a
dissatisfactory solution to the DMs if the parameter vakemstain some degree of uncertainty.

Uncertainties that frequently occur in the real life demisinaking situations may be fuzzily or stochastically diwsat.

The context that arises due to the simultaneous presencandbmness and fuzziness is known as hybrid fuzzy
environment. To resolve the randomness, Dantzig [13] ¢hteed stochastic programming using the concept of
probability theory. There are two main approaches of steiahprogramming, namely, chance constrained programming
(CCP) and two- stage programming. Charnes and Cooper [E4]d@veloped the CCP models. The concept of CCP
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technique for solving different type of problems was furtbetended by several researchers [15,16] in recent pait. Wi
this advancement in computational resources and sciemiificputing techniques many complicated optimization
models can now be solved efficiently.

The possibilistic uncertainty involved inherently withetibMs ambiguous understanding of the nature of parameters
associated with the problem. Fuzzy numbers, introduced agel [17], are used to handle fuzzy uncertainty.
Zimmermann [18] showed that the solutions obtained by fuzmar programming are always efficient. Sakawa et al.
[19] formulated cooperative fuzzy bilevel programming lpems and proposed an interactive fuzzy programming
approach to solve the problems. Shih and Lee [20] appliezifset theory to overcome the computational difficulties in
solving bilevel problems. Recently, Zhang et al. [21] statiiuzzy bilevel programming problem, which focuses on the
situation where the leader or the follower has multiple otiyes with fuzzy parameters and all followers share their
decision variables. Moitra and Pal [22] adopted fuzzy gaaigpamming (FGP) approach for solving linear BLPP.
Abo-Sinha [23] discussed multi-objective optimizatiorr folving non-linear multi-objective bi-level programrgin
problems in fuzzy environment. Osman et al. [24] extendedyuapproaches [23] for solving non-linear bi-level and
tri-level multi-objective decision making under fuzzise®aky [25] studied FGP algorithm for solving decentralize
bi-level multi-objective programming problems. Arora a@dpta [26] presented interactive FGP approach for linear
BLPP with the characteristics of dynamic programming. Satitory solution is derived by updating the satisfactory
degree of the decision makers with the consideration ofadveatisfactory balance between both the levels. Dend.et. a
[27] developed a method for solving the fuzzy BLPP with npl&ifollowers through structured element method.

Considering simultaneous occurrence of randomness amihfss in BLPP, Modak and Biswas [28] developed an FGP
approach for solving bilevel stochastic programming peaid. But FGP approaches to fuzzy linear bilevel integer
programming problem (FLBLIPP) with Pareto distributed &mdchet distributed fuzzy random variables (FRVS) are yet
to appear in literature.

In the present study a methodology for solving FLBLIPP witdrd?o distributed and Frechet distributed FRVs in right
hand side parameters of the constraints are developed.tAésparameter of the objectives and the left hand side
parameters of the constraints are taken as triangular fuzmpers. At first the probabilistic uncertainty is remowveri

the constraints by applying CCP technique. Then using aodethdefuzzification of triangular fuzzy numbers [29] the
problem is reduced to linear bilevel integer programmingbpgm (LBLIPP). The individual optimal value of the
objective of each DM is found in isolation to construct thezy membership goals of each of the DMs. Finally FGP
approach is used to achieve maximum degree of each of the emehip goals of the DMs by minimizing
under-deviational variables in the decision making envinent.

2 Basic concepts

The preliminary ideas such a@s—cut of fuzzy set, fuzzy number, triangular fuzzy number,udeffication method for
finding the expected value of fuzzy number, fuzzy randomaldei following Pareto distribution and Frechet distribuati
which are necessary in the treatise of formulating the pgedanodel are described in this section.

Definition 1. a—cut of a fuzzy seA is a crisp set, denoted By{a] and is defined b a] = {x: x € X andpz (x) > a},
(0 < a < 1), where X represents the set on which the fuzzpsedefined.

Definition 2. A fuzzy sef defined on the set of real numbeks,is said to be a fuzzy number if

(1) Ais a normal fuzzy set. i.e., there exists a poiatk such thatuz (x) = 1.
(2) Thea—cut ofAi.e.Ala] is a convex set for allr € (0, 1].
(3) The support oA is a bounded set.
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Definition 3. A fuzzy numbeh is said to be a triangular fuzzy number if its membershigfiom is expressed as

L .
xarif a-<x<a
R .
Hr(X) =q =2 ifa<x<a®
0 otherwise

A triangular fuzzy numbeh is written in the formA = (a‘,a,aR). Geometrically a triangular fuzzy number is presented
as,

0 at a at
Fig. 1

Definition 4. LetA = (a,a,aR) be a triangular fuzzy number. Then the equivalent crispevaliA is obtained by finding
the expected value using tlee cut of the triangular fuzzy number. The membership funatibthe triangular fuzzy
numberA = (a", a,aR) is given by

L
x-al)jf gl <x<a

(aR ak)
Ha (X) = éZR::; ifa<x<aR-
0 otherwise

Thea — cut of the triangular fuzzy numbér= (a", a, a®) is written as
Ala] ="+ (a—a") a, a*— (- a)a].

Then the equivalent crisp value of the triangular fuzzy neindbis calculated as

1 -1
V (A) :/o (a-+(a—a")a) ada+/0 (aR— (aR—a)a)ada

_fa (a-ay) @ (@-a)
12 3 2 3
[a-+4a+af]

Definition 5. Let X be a continuous random variable with probability dgnginction f(x, 8), where6 is the parameter

of the probability density function. & is uncertain in nature, the may be chosen as fuzzy numieThen a continuous
random variable with fuzzy numbeéras parameter is known as continuous FRVThe probability density function of
the continuous FRX is denoted by (i ; 6).
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L 4

Fig. 2

2.1 Fuzzy Random Variable following Pareto Distribution

Letb; is a Pareto distributed FRV. Its probability density funatis written as
~ o~ uiv; Ui ~ ~
f (bi B /\i) = ﬁ,ui €Aila], vi € Bi[a]

whereb; > v;. HereXi [a], ﬁ [a] are thea—cut of fuzzy numbergi, E. whose support are the set of positive real numbers.
The probability density curve of the Pareto distributiosli®wn in Figure 2.

2.2 Fuzzy Random Variable following Frechet Distribution

Letb; is a Frechet distributed FRV, its probability density fuantis written as

b 8.) =0 (bq;d)le()r cfila]. a € &lal. d e ifal

whereb; > di. Herefj [a], 5[0] andn[a] are thea—cut of fuzzy numbergi;, & and 7 respectively. The support of

Li, & are the set of positive real numbers and the suppaft fthe set of real numbers. The probability density curve of
the Frechet distribution is given in Figure 3.

3 Fuzzy linear BLICCP model
The general form of FLBLIP problem under probabilistic eoniment is expressed as

Find X(x1, X2, ..., %) SO as to Maxlil (X) = z'j‘:léljxj (Leader's Problem), where for givey ; Xp solves
Maxx, Z5(X) = Z?:lézjxj' (Follower’s Problem), subject to I{E?:léijxj' < Bi) >1-p;i=12...,m

n
Z &jxj <b;t=12,...,s xj >0andare integerg;=1,2,..., n. (1)
=1
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Fig. 3

Here some; (i=1,2,.,1) represents Pareto distributed FRVs and the olfxe(ris: [+1,1+2,..., m)follows Frechet
distributed FRVs. The coefficients of the objectivgsahdcy; are taken as triangular fuzzy numbers. The coefficients of

the constraintsj, &j, b (i=1,2,..., m;j=12,..., n;t=12,..., s) are also considered as triangular fuzzy
numbers. Again the parameters of the FRVs are triangulayfommbers ang < [0,1].

It is to be mentioned here that the decision vedpe= (X11, X12, . ..., X1n,) iS controlled by the leader and the decision
vectorXy = (Xz1, X22, ..., Xon,) is controlled by follower. Also; U Xo = X = (X1, X2, ...., Xa) € R"withny+ny=n.

3.1 Chance Constrained Programming Technique

In this subsection CCP methodology is applied to converptiobabilistic constraints into fuzzy constraints. Thearela
constraints in which the FRVs follow Pareto distributiordghe FRVs in the remainingn— | probabilistic constraints
follow Frechet distribution.

At first the CCP technique is applied to theonstraints involving Pareto distributed FRVs as follows
n ~
Pri > &jx<bi| >1-p;(i=12..1)
=1

ie., PI’(A@ < Bi) > 1— pi, whereA, = Y_18jx, e, @ uvil g > pi; Ui A [a], vi € El [a], k € Ai[a]andk; > v;,

e k< —YrueAlal, vie Bla], k€ Ala) andk > vi.

(1-pi) "
Since, this inlequality is true for adt €(0, 1], the expression can be written in termsoetut as

Ala) < —Pl andAfa] > fila); (i=1.2,..)) 2)

(1— py)hila)
Now, using first decomposition theorem, the above equasioaduced to the following form as

B

+ andA >B; (i=12,..0). ©)
(1—pi)h

A<
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Now, applying CCP technique in the remaining- | probabilistic constraints involving Frechet distributegvs, the
constraints take the following form as

n
Pr(Z & §6i> >1-p;(i=1+11+2.,m)
=1

~ - ~ 1-ri _(bidi)7h
ie, Pr(Ai<b) > 1- p, where A = 3] ,8&jx, ie. f,;’l"%( 3 ) "e (*a*) db > 1 — p;;

i e mlal, g € &la], d € Rifa] and h € Afa] and h > d, ie, h < d + g

T,
n(%)"
riefilal, g e &[al, d e fijajandh; € Aj[a] andh; > d;.

Since, this inequality is true for aft (0, 1], the expression can be written in termsoetut as

Ala] < fila)+ & [a] ——— andA [a] > Aifal]; (i =1+11+2,.,m) (4)

Hila]
In(m)

Now using first decomposition theorem, the above equaticedsced to the following form as

A< i+ 8— and& > 7ii; (i=1+1,1+2,..m). (5)

n(2)f

Hence the FLBLICCP model (1), is converted into the equivalLBLIPP problem by using the derived methodology

as; Fin~d X(X1, X2,..., Xn) SO as to Maxlzl X)= z'j‘:lc”:ljxj (Leader’s Problem), where for givexy; X, solves
Maxy, Z2 (X) = 3], &2jX; (Follower’s Problem), subject to

n
Zé”-xjg - =121
= (1—p)™
n ~
zé-ijxj ZBI |:1525 al
=1
n L= 1 .
zéinJ <Ni+6———; i=1+11+2,..m
=1 Hi
In(g)
n
Zﬁ. i>n;i=1+1142,..m
j:
n ~
z &jxj <hb; t=12,...,s Xj >0andareintegerg;=1,2,..., n. (6)
=1
Herecy;j, 621': é"L’ &;j, Btg =12....n i=12.... mt=212... ) are taken as triangular fuzzy numbers. Also the

parameterg , Ai ,ni, &, [ of the Pareto and Frechet distributed FRVs are consideréibagular fuzzy numbers.
Then% and% are also taken as triangular fuzzy numbers. So, these tifianiyzzy numbers can be expressed as

61j = (C&jv C1j, C?J)! 62] (CZ]v C2j, CZ]); (a1j7 aij, al])! (atLJv aj, atr\]):

b = (b}, by, BF); B = (B", B. BY); 7 ?nl,m), (6#,& 3");
()R ) 2 () 2 )
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3.2 Fuzzy linear BLIPP model

The fuzzy numbers are defuzzified in this subsection to finéguivalent deterministic model of the given problem.
Defuzzification of fuzzy numbers is a process that maps ayfammber to a crisp number. The crisp values associated
with the fuzzy numbers of model (6) are obtained by the metifadefuzzification [29] of the triangular fuzzy number
usinga — cut are given as

L R L R L R
. C1; +4c1j+ cT; N C5; +4cj + C5 N ak +4ajj + a°
V (&) Z%; V (&) =%; V(aj):%;

. aj+dag+al o bbb+ bR x\ B+4Bi+ BR
V(&) = T v (B) = 2 v (B) - A
L R
1 1 1
v () = MHAn+ nf v(3)- g+aa+of (1) _ () +4i+ (1)
ni) = 6 ; = 6 ; Xi = 6 ;
L R
1 1 1
(&) Haar R) o .
\% ﬁ = 5 ; (1=21,2,...,m i=12,...,m t=12...,9). (8)
|
Thus the equivalent deterministic model of the FLBLIPP (6)stated as; Find X(xi, X, ..., X;) SO as to

Maxx, V(Zy (X)) = >1_1V(&1j)x; (Leader’s Problem), where for givei; X; solves Max, V (Z2 (X)) = Y-V (€))%
(Follower’s Problem), subject to

VE) .
a-p‘(3)

V(&j)xj >V(B;); i=12,.,1

™>
<
~
K3
IA

M= TM:

V(&)X <V(M)+V(8) ————; i=1+11+2,.,m
! In (l)v(ﬂ_i)
Pi

n

> V(&)X >V(Ai); i=1+11+2..m

=]

n

Y V(&;j)x <V(b); t=1,2,...,5 x >0andare integerg;= 1,2,...., n. 9)
=]

4 Fuzzy goals and membership functions

In a bilevel system, it can reasonably be assumed that betblths are motivated to cooperate with each other and each
one tries to optimize his/her own benefit paying seriousmétia to the benefit of the others. Now, both the leader and
follower optimize their objective independently under fagne set of system constraints defined in (9). Let

[XE v (Zk)b} = {XELXEZv“vXEn Y (Zk)b

and
[X\liv Y (Zk)w] = [X\Iivlvx\livb ..,X}Q’n Y (Zk)w] )
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(k=1,2) be the best and worst independent solutions of the objesabi/the respective DMs. Hence, the fuzzy objective
goal for each of the corresponding DMs is expressed as:

V(Z) > V(Z)P fork=1,2. (10)

In a bilevel decision making context, it is to be realizedtttie full achievement of the respective goal values of the
DMs are not always possible due to conflicting nature of thedailves of the DMs and also due to the scarcity of limited
resources in the decision making context. Again values dahan the worst values of the objectives of the DMs are
completely unacceptable to the DMs. Hence the membershgiitins of the defined fuzzy goals are formulated as

0 if V(Zk) < V(Zk)w
V(Z)-V(Z)V - b
Wiz = { vy f V(2" <V(Z) <V (Z° (k=1,2). (11)
1 if V(Z) >V(Z)"

The membership function defined above are now convertedhetanembership goals by introducing under- and over-
deviational variables and assigning the highest membeusthiie (unity) as the aspiration level to each of them.

5 FGP model

The FGP model of the corresponding linear bilevel integegpmming problem (9) is presented as: Px(d, X2, . .. .Xn)
so asto Min D 52, wcd, and satisfy

V(Z1) —V(Z0)"
V(Z)° -V (Zy)"
V(Za) —V(Z2)"
V(Z2)P = V(Zo)"

+d; —df =1,
+d; —df =1,

subject to

TM 5
A
—
H
|
- |=
~— m
==
2>
N———

S

sl
o

i=1+1,1+2,...m

Il
!

n (;)V(%ﬁ)

Pi

=}

V(&)X >V (i) i=1+1,1+2,.,m

sl
o

V(&j)xj <V(b);t=1,2,...,s x; > 0and are integerg;=1,2,..., n

S
L

;,di,d;,d) > 0withd; .df =d;.dj =0 (12)

wherew = 1/(V(Z)P —V(Z)") (k= 1, 2) represents fuzzy weight corresponding to the merhizegoals of the DMs.
The derived model (12) is then solved usmgsungoal programming to achieve most compromise solution ircisam
making context.
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The derived methodology for solving FLBLICCP model can beswarized by the following algorithm.

Step 1: Using CCP technique, the fuzzy probabilistic camsts are converted into constraints involving fuzzy nursbe
Step 2: Defuzzification of fuzzy number using-cut is applied to find the expected value of the fuzzy numbers.
Step 3: The individual optimal value of the objective of e@i¥is is found in isolation.

Step 4: The fuzzy membership goals of each of each DMs arercoted.

Step 5: FGP approach is deployed to achieve maximum degesechfof the membership goals.

Step 6: Stop.

The solution process for solving FLBLICCP model can also t@s@nted using the following flow chart.

FLBLICCP madel

e i Y
Linear ohjective functions Constraoimnts with fuzey numbers and
with fuzey coetlicients fuzey random varinhles
CcCP lTE chnique

Applving CCP technique the fuzey probabilistic
constraints are converted into fieey constroints

MAethod of Defuzzification

LBLIP msdel

l

Optimal solution of the objective of each [ is
calculated under modified constraints

|

Construct the membership goals of the objective of cach

[

|

FGP model is applied to achieve maximum degree of
cach ol the membership goals

|

Stop

To illustrate the proposed approach, a numerical examie®d in the next section.
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6 Numerical example

The following QFBLCCPP is considered to explore the appilice potentiality of the proposed approach: Find
X(X1,X2,. .., %) SO as to, MaZy = 9x; + 12 + Ixz, Max Z; = 11x; + 10x3. Subject to

Pr(3x +6xp+4x3 <by) >1—py
Pr (2X1+§X2+1X3 < 62) >1—p2
§X1+1X2+1X3§§é

X1, X2, X3 >0 and integers. (13)

Hereb; represents Pareto distributed fuzzy random variabldNJdepresents Frechet distributed fuzzy random variable.
The values of scale and shape parameter of the Pareto diirilare given as follows.

Scale Parameter Shape parameter Specific probability
level
=23 L-3 py = 0.09
1

Table 1: Value of Scale and Shape parameter of the Pareto distributio

Also, the values of scale, location and shape parameteedsriéchet distribution are presented as follows.

Scale parameter | Location Shape Specific
Parameter Parameter probability
level
»=6 M =11 =05 p, = 0.20

Table 2: Value of Scale, location and Shape parameter of the Fredtabdtion

The triangular fuzzy numbers related to the parametersaodigtributions are taken with the form as

- 1 .
By = 23= (225, 23, 235); == 3= (2.95,3,3.05);
1

~ . o~ 1 —
5 =6=(5.8,6,6.2);0, = 11=(10,11,12); 5, —05= (0.3,0.4,0.5).
2

Also the coefficients of the objectives and the constrairdsasso taken as triangular fuzzy number with the values

9=(85,9,9.5);12=(11,12,13); 1= (0.95,1,1.05); 11= (10.6,11,11.4); 10= (9,10,11)
3=(2.95,3,3.05);2=(1.5,2,2.5);6 = (5,6,7);4 = (2,4,6);32= (31,32,33).

Now, applying CCP technique to the probabilistic constsaémd then using the defuzzification technique of fuzzy remmb
to the objectives and modified constraints the model (13)ceslto:

MaxV(Z,) = 9x; + 12% + X3, MaxV(Z,) = 11x, + 10x3,

(© 2016 BISKA Bilisim Technology
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Subject to

3X1 + 6Xo + 4x3 > 23

3X1 + 6% + 4x3 < 30.67

2X1+ 3o+ X3 > 11

2X1+ 3% +x3 <1574

M+ X +X%3<32; X3, X2, X3 > 0and integers. (14)

Now each DM considers their objective independently and ga@ve with respect to the system constraints in (14) to

find the best and worst values of the objectives. The restdtelatained ag; = 3, xo =3, x3 = 0 with V(Zl)b =63;

andx; =0, xo =3, X3= 3 with V(Zg)b = 63. The worst values of the objective of the respective DMscatculated as
V(Z1)" =39 andv(Z,)" =33

Thus the fuzzy goals of the objective of the DMs are found as:

V(Z1)" 1z 63

V(Z,)° - 63,

On the basis of the tolerance limits of the objective of thed)e membership functions of the leader and follower are
expressed as
B 9x1 4+ 12%X2 + X3 — 39

Wvzix) = oY
11%, + 10x3 — 33
Wzm) = ——35

Thus the FGP model is constructed, after converting the neeship function into membership goals by assigning under
and over-deviational variables to the membership funeteomd by minimizing the under deviational variables as

Minimize D = 0.042d; + 0.033d;, subject to

0.042(9% + 12+ X3 —39) +d; —d; =1

0.033(11xp+10x3—33) +d, —dy =1

3X1 + 6Xo + 4x3 > 23

3X1 + 6X2 + 4x3 < 30.67

2X1+3Xo+x3 > 11

2X1+ 3%+ X3 < 1574

91 + X2+ X3 < 32

X1, X2, X3 >0 and integers. (15)

Now the above FGP model is solved usisgftwareLINGO (Ver. 1] to find the compromise solution in the decision
making context. The solutions which are achieved are ptéseugh the following Table.

Solution Expected value of Membership Value
Objective

x1=0,%=5x=0 |V(Z)=60 Iy (z,(x) = 0.875
V (Z;) =55 Iy (z,(x)) = 0.733
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It is to be noted here that if the problem is solved withoutsidering the integer programming, the achieved solutions
are almost the same as like this case. However, some sitgaitses in which the DMs concentrates on integer values.
From that point of view, the developed methodology has beesemted.

7 Conclusions

In this paper an innovative technique for solving FLBLICCRdel is discussed in a hierarchical decision making
environment for finding most satisfactory solution to ak thMs for overall benefit of the organization. The proposed
procedure can be extended to solve hierarchical decisidingn@roblems with quadratic, fractional type of objective
Also this methodology can be used to solve nonlinear detisiaking problems in a fully fuzzified domain. The
suggested technique can also be used to solve the FLBLICGHImdgth coefficients taken as trapezoidal fuzzy
numbers. The proposed methodology can be applied to ditfeesal life problems for obtaining most satisfactory
solution in a hierarchical decision making environmentweeer, it is hoped that the proposed procedure may open up
new vistas into the way of making decision in the decision imgkrena.
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