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Abstract: In recent years, a great interest has been shown towardewsybspace techniques applied to model order reduction of
large-scale dynamical systems. A special interest has Beested to single-input single-output (SISO) systems hggusoment
matching techniques based on Arnoldi or Lanczos algoritHmshis paper, we consider multiple-input multiple-outgMIMO)
dynamical systems and introduce the rational block Arnptdcess to design low order dynamical systems that are iclegene sense

to the original MIMO dynamical system. Rational Krylov splase methods are based on the choice of suitable shiftsrthaekected

a priori or adaptively. In this paper, we propose an adapelection of those shifts and show the efficiency of this eagh in our
numerical tests. We also give some new block Arnoldi-likatiens that are used to propose an upper bound for the nothearror

on the transfer function.
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1 Introduction

Let us consider a linear time-invariant (LTI) multi-inputcamulti-output (MIMO) system described by the state-space
equations

yit) = Cx(), .
wherex(t) € R" denotes the state vector anft), y(t) € RP are the input and output vectors respectively of the (LTI)
system {). The matrixA € R™" is assumed to be large and sparse, Bn@" € R™P are tall matrices wittp < n. For
single-input single-output (SISO) systems, the matri#asdC are vectors (i.eo = 1).

The linear time invariant systeni)(arises in simulations of dynamical systems where parifidréntial equations are
involved and matriceé andB which are generated by the discretization of these equatiomoften very large. In many
cases, the large state-space dimension (or ordefthe system1) makes the simulations very difficult. Therefore, it is
necessary to seek for a lower order model whose behaviolgss to the original:

{)’((t) — AX(t)+Bu(t)

Ym(t) = CmXm(t),

such that\y, € R™™, By, CT € R™P, xn(t), ym(t) € R™, andm < n, while maintaining the most relevant properties of
the original system().
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Many existing model order reduction methods such as Papé=imation [L1,28], balanced truncatior2fl], optimal
Hankel norm §,10] and Krylov subspace based methods In particular the Aiaddgbrithm [4,5,18, 19 takes advantage
of the sparsity of the large-scale model and has been ext#ynsised for large problems; seg 18,15]. When using
block Krylov subspaces, one projects the system matricesthef original problem onto the subspace
Jm(A,B) = RanggB,AB,...,A™ 1B} generated by the columns of the matrid@®sB,...,A™ !B and try to get a
sufficiently accurate reduced system with a moderate spagendion.

In this work, we will consider the rational block Krylov sytece which is a subspaceRf generated by the columns of
m

the matrices8, (A—s1)71B, ..., rL (A—sl1)71B, wheres,, ..., s, are some selected complex shifts. The original large
problem is projected onto thisIBIock Krylov subspace to gatw low order dynamical system that is close in some
sense to initial one. The rational Krylov subspace procedvas originally proposed by Ruh&d] in the context of
approximating interior eigenvalues and have been usedgldiie last years for model order reduction; ség.[The
selection of good shifts is a crucial issue for the qualitythed approximation. The use of rational Krylov spaces is
recognized as a powerful tool within model order reductexrhniques for linear dynamical systems, however its sgcces
has been hindered by the lack of a parameter-free procedhieh would effectively generate the sequence of shifts
used to build the space. Major efforts have been devoteddajthestion in the recent years; see for examf|é,B, 18,
20,27). In the context of72-optimality reduction, an interesting attempt to provide automatic selection has been
recently proposed inlf3]. However, the computational and memory costs of this aggitdave not been fully assessed.
We also mention the early contribution due to Grimr&] [for determining a sequence of shifts. Another approach has
been recently developed iB][to generate these parameters. In this paper, we proposeéagtivee computation of the
shifts for building the rational space by minimizing, at lederation of the process, some matrix norms. We will derive
some theoretical results such as upper bounds for the nothedrror on the transfer function. Some numerical tests
will be provided in order to compare our approach with othésteng methods.

The paper is organized as follow: In Section 2, we introdineerational block Arnoldi and give some new algebraic
relations. Section 3 is devoted to the selection of the stiifit are used in the construction of rational Krylov subspa
and we give an error bound for the norm of the error on the tearfienction. A new modified rational block Arnoldi is
proposed in Section 4 and some new Arnoldi-like relatiomspapposed. The last section is devoted to some numerical
tests and comparisons to some well known model order remuntethods.

We will use the following notations: the 2-norm of a vectorodra matrix will be denoted by . | andl is the identity
matrix of dimensiom x p.

2 The rational block Arnoldi method

In this section we will describe the rational block Arnoldtjarithm for computing an orthonormal basis of the rational
block Krylov subspace defined for a given matBix R"*P as

m

Km(A,B) = Rangé{B, (A—sI)"1B,..., _rL(Af sh)~1B}). (3)

The rational block Arnoldi algorithm generates a sequerfce ® p blocks {Vi,...,Vn} whose columns form an
orthonormal basis of the rational block Krylov subsp¥&Gg{A, B). The algorithm is described as follows

(© 2016 BISKA Bilisim Technology
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Algorithm 1 The Rational Block Arnoldi Algorithm

—Input: Ae R™", B € R™P and a fixed integem.
—ComputeV; = QR(B), 71 = [V4].
—Forl: 1,....m-1
1V = (A—sjl) V.
2.0rthogonalization step:
Fori=12,...,j
Hij =V 'Vjs1
Vit1=Vjy1—ViHj;
End For
3-QR(VJ+1) :Vj+1Hj+1,j-
4711 =[], Vil
—End For.

The shiftss,, ..., sy will be chosen a priori or a posteriori during the process tnigl will be explained later. Aftem
steps, the rational block Arnoldi algorithm generates @blmatrix ¥, = [V1,...,Vn] € R™™P whose columns form an
orthonormal basis of the rational block Krylov subsp&GgA, B) and an uppefm+ 1) p x mpblock Hessenberg matrix
' m Whose blockdd; j are defined by Algorithnl. Thempx mpupper block Hessenberg matti%;, is obtained from
' m by deleting its lasip-rows. In the sequel we will also use the restriction matfix defined by.7m := 77 A%m. We
first give some new algebraic relations generalising thé kamelwn Arnoldi like relation given for the classical case.

Proposition 1.Let 7, ¢ m and./%, be the matrices generated by the rational block Arnoldi aliyen and let.#, be the
block-diagonal matrix blkdia@ylp, . .. ,Sn1lp) Where{s,, ..., smy1} denotes the set of shifts used in the algorithm. Then
we have the following relation

T = Y5iAYm = (Imp+ S — YAV 1Hmi1.mEm) - L,

Proof. After m steps of the rational block Arnoldi algorithm, we have

j+1
(A—sji1ln) 7V, = ZviHi,,- forj=1,...,m
i=
then
j+1 j+1

Vi =A() ViHij) —sj+1( ) ViHi; forj=1,....m
i (i; iHij) =S+ (i; iHij)

This gives the following relation
Vm = A(le%m) - (yml%m)ym,

which can also be written as
7/m = A(df/m%m +Vm+le+l,mE:n) - (df/mjfm +Vm+le+1,mE;q)ym-

Multiplying the last equality on the left by;: and using the fact that the blocWs, . .., Vin.1 are orthonormal, we get the
identity
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Finally, we can deduce the relation
Tin= (Imp+ T m— VAV 1Hm1.mEm) #on

which ends the proof.

We can also state the following result

Proposition 2. Under the same assumptions as in Propositiowe have
A = YT — (In— %) AVing 1Hm 1. mEmm G * 4 Vint tHm 1. mEmmSm%n *.
Proof. As stated in the previous proposition, we have
Y = A(YmH i+ Vimir1Hme 1mEm) — (Y + Vimp1Hmi1.mEm)Sm.
Hence, we can write

Aﬂi/mjipm == 4//m - AVm+]_Hm+]_’mE;~| + Vm%mym +Vm+1Hm+l7mE;1ym
= Af/m(|mp+ %mym) - AVm+1Hm+l,mE:n +Vm+1Hm+l,mE:nym-

Using Propositiori, we obtain the following relation

Aq//m%m == qf/m(ym%m + q//m*AVm+1Hm+j_mE;1) - AVm+1Hm+1,mE;1+Vm+le+1,mE;1ym
- q//mym%m - (In - q//mlyr;;)AVm_H_Hm_H_’mE;‘+Vm+]_Hm+]_,mE;%ym.

Therefore
A”Vm = mem - (ln - menj)AVerleJrl,mEr?%nTl +Vm+1Hm+l,mE;1ym<%0n171-
3 An adaptive computation of the shifts

In this section, we will see songeposteriorianda priori procedures for selecting good shifts used during the coctibin
of the rational block Arnoldi bases. This is a crucial probhen using rational Krylov subspace methods.

3.1 An a priori selection of the shifts

We briefly describe aa priori way for selecting the complex shifts. This technique wasoihiced by PenzI25 and
implemented in the routinep_para of the library LYAPACK [23]. The parameters are selected by solving the following
min-max problem; see?b, 30,31] for more details.

: [A—p1)...(A— )
$1,9,...,§y=ar min max
¢ p=arg {1 2.} EC— ’ co) | (A+H1)... (A + )

), @
|
whereg(A) denotes the spectrum of the mathix

As we generally are unable to compute the spectrum of matrithe classical approach is to cover it by a domain

(© 2016 BISKA Bilisim Technology



=
NTMSCI 4, No. 2, 227-239 (2016)www.ntmsci.com BISKA 21

Q c C_ and then to solve the minimax problem with respectXoln [24,25], a heuristic procedure was proposed to
find "sub-optimal” parameters. This technique first gere=at discrete set which approximates the spectr¢f) using

a pair of Arnoldi processes. The first one acts on the métid generatels, Ritz values which tend to approximate
the eigenvalues far from the origin. The second proces®)gaon the matrixA—!, generatek_ Ritz values whose
inverses are close to the origin. The set of shift paraméteh&en chosen as a subset of these Ritz values. This pracedur
is widely used in the ADI-type methods for solving large scalatrix equations such as Lyapunov or Sylvester matrix
equations; see for examplg 1 6]

3.2 A new adaptive selection of the shifts

In this subsection we propose an adaptive technique for atinmgpthe shifts that are used to build the rational Krylov
subspace. This procedure automatically generates thesegof shifts during the construction of the rational Adiol
subspaces.

A classical way of relating the input to output is to use tlagfer function (or impulse response in the time domain) of
the LTI system ). Indeed, applying the Laplace transform

2(F)(9) = /Ome*Stf(t)dt,

to the dynamical systermi), we obtain

)

sX(s) = AX(s)+BU(s)
Y(s) =CX(s)

whereX(s), Y(s) andU (s) are the Laplace transformsxt), y(t) andu(t), respectively. Eliminating (s) in the previous
two equations, we get

where
H(s)=C(slh—A)"!B. (5)

The rational functiorH(s) is called the transfer function of the systet).(We recall that most model order reduction
techniques, for example the moment-matching approachebased on the approximation of this transfer function; see
[2,12,18]. If the number of state variables is very large, it would leeydifficult to use the full system for simulation or
run-on-time control. So it is reasonable to look for lowede&r models that approximate the behavior of the original
models. This will be done by approximating the transfer figrc(5).

Let us writeH (s) = C X whereX € R™P is the solution of the matrix linear system
(slh—A)X =B. (6)
In order to approximate the transfer functidnwe will look for approximations of the solutioX of the multiple second

member linear systen®). Let X, denotes the approximate solution obtained by the Galerkijegtion method onto the
rational Krylov subspack m(A, B). This approximate solution is given by

Xm - ym(slmp_ ym)ildi/r;B,
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where 7m = 75 A%m, hence the transfer functidt is approximated by the low order transfer function corresiiog to
the projected low order dynamical system and given by

which can be written as
Hm(S) = Cm(Shp— Fin) *Bm, (7)

whereCy,, = C¥, andBy, = 71, B.

In the sequel, we will give an expression for the norm of therdd (s) — Hm(s), which will be used for the selection of
our shift parameters. First, we recall the no#f, for a matrix-valued function

[Hlleo = supomax(H (iy)).
yeR
Indeed we have:

H(s) — Hm(s) = CX —CXn
=C(sh—A)"1B—CXn
=C(Sh —A)"1[B — (Sl — A)Xn).

By applying the norm described above, we obtain
IH(8) = Hm(9)]| < IC(Shh — A)~*|[[| o

wherelm = B— (sl — A)Xm. S0, one way for selecting a new shift, is to choose thoseah@ais us to reach|Mm||«.
Hence, our new shif,, 1 will be chosen as

Sm+1={SE R : Omax(Im(is)) = || M|l }- (8)

As we will see in the numerical tests, this simple procediregygood results.

3.3 An error expression for the transfer function

In the following proposition we give an upper bound for tha@m of the erroH (s) — Hm(s).

Proposition 3. Let H be the transfer function defined i) @nd let Hy, be its approximation. Then, under the conditions
|A]] < |5, we have the follwing upper bound:

H(S) — Hm(S) = C(Sh — A) [ = (In— #m¥m) AVt 1Hm 1 mEme 2t + Vint tHme 1 mEnSn % 2] (Shnp— Tm) 7B

And L
I Hm-2,ml| (A4Sl D ]

RO = Hn(dl= (15— A1)

(Shp— Fin) /20 Bl.
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Proof. We have:

H(S) — Hm(S) = C(Sh —A) "B — Ci(Shnp— Jin) 'Bm
=C(sh—A) "B~ C¥n(Shmp— Jm) 1 %:B
=C(Sh—A) "B~ (Sh—A) #n(Skmp— Tm) " 7B]
=C(Sh—A) " [B— (s¥m— A%m)(Smp— Tm) " /mB].

Using Propositior?, we obtain

H(s) — Hm(s) = C(sh — A)"*[B— (S¥m— ¥mTin+ (In— Ym V) AVims 1tHm 1 mEn 2
*Vm+le+1,mEr?13n<%0rnil) (Slmp* ym)ilq//nJ;B}
=C(sh—A) "B~ (s¥m— ¥mTm)(Sknp— i) B — ((In— Y¥)
X AVini1Hm1.mEnn - — Vit 1tHmi mEmSnn ) (Shnp— Jin) 7 B)
=C(sh—A) " [B—#m¥mB— ((In— Ym¥m) AVims1tHmi 1 mEn i
— Vit tHme L mEmSn#n 1) (Shp— Jin) "+ #3B.

As Bis in the rational Krylov subspac8)( then we have/i7;;;B = B. This gives the following expression

H(S) — Hm(s) = C(sh — A) [ = (In— #m¥m) AVt 1Hm L mEp i
+Vm+le+lymE;-|S-n%mil} (Slmp - ym)71%$ B

By applying the 2-norm we obtain
IH(s) —Hm(s)l| < [[C(slh—A) | {H (In— Y ) AV 1Hme 1 mEm o |
o+ [Vins 1 .nErnSn o 2| % [(Shmp— Fon) /Bl
Therefore , agA||< |s| we obtain

. ||CH o * * -1
HH(S) Hm(S)H < (|S| — HAH) [H(In /qu//m)AvaLlele,mEm%m H

o+ [Ving 1Hms ,mEnSin o | [ (Shnp— i)~ 43B|

furthermore as$, — ¥m”y, is an orthogonal projection anm:1/|= 1, we get

I Hm .l 1A+l ) 750 H

IH(s) = Hm(s)]| < (sl — 1A

(Shnp— ) #Bl.

4 A modified rational block Arnoldi algorithm

In this section, we describe a generalization of the rati&mgov subspace, allowing some shifts to be equal to infinit
Ateach stefj + 1, the algorithm computes a new bloék 1 = (A—sj11)~2V; if 5j.,1 is finite andVj 1 = AV} if sj,.1 = o.
The modified rational Arnoldi algorithm is summarized asdalks
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Algorithm 2 Modified Rational Arnoldi Algorithm

—Input: Ac R™" Be R™P m.
—ComputeV; = QR(B), ¥ = [V4].
—Forj=1,....m-1
S [ (A=sjpal) "V, if  sji1 # o) sj41 byusing8).
1.Set\/1+l - {A\/J7 |f Sj+l — 0
2.0rthogonalization step:
Fori = 1,2,..;,j
Hij ZVLTVj+1;
Vit1=Vjy1— ViHj;
End For
3QR(VJ+1) == Vj+]_Hj+]_’j .
47 41= 7, Vil
—End For.

The idea of including infinity as a possible interpolatiotimieould be considered as a generalization of the extenide# b
Arnoldi algorithm [L4,29]. This new version also allows one to obtain new simple Adirike relations that could be
used when deriving for example error bounds or residuat estpressions and perturbation analysis. Using the modified
rational Arnoldi algorithm, we can state the following silmg\rnoldi-like relations

Proposition 4.Let.” = {s,,...,sn} C C and¥m = M4, ..,V 1] € R™(MDP as generated by running Algorithenfor
one extra interpolation point at,;g.1 = . Then the following Arnoldi-like equations are satisfied

Aqf/m = q//m+j_?m
== qf/mym‘i’Vm_H_Nm,

where.7 m= ¥ 1A%, Im = VmA¥mand Nn = Vi A¥m.

Proof. From Algorithm2, it easy to see that the following relations are satisfied
Rangé[7m AVin]) = Rang€¥m.1), and 71 mi1 = lme1)p-

Let us now prove that
RangéA¥nm) C Rangé¥my1).

Indeed, aftem— 1 iterations of the rational Arnoldi algorithm, the proofffopositionl gives us
V-1 = A(Ym-1n-1+VaoHmm-1En 1) — (Pm-176m-1 + VeHmm-1Em 1) Zm-1,
then
AV 1= Ym 1764 — ANeHmm 165 1700 5 4+ (Ym-156n-1+VHmm-1E_ 1) Sm- 17655

Using the fact thaRang€Avim) C Rang€¥m.1), it is clear thatRangéA¥q,-1) C Rang€¥m.1), andRangéA¥m) C
Rangé ¥ 1). Therefore we have
A7/m == 4//m+l?m, (9)
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for some matrix7 m. Since¥m,1 is orthonormal, multiplyingQ) on the left by7h. 1, We getTm = Vi1 AVm. We can
also see that
A7/m = ymgm +Vm+le (10)

for some matrices/,, andNy,. Therefore, multiplying10) on the left by¥;; gives
‘,S/ﬂm = ym - q//n:(A/Vm7

and multiplying (0) by Vy;,, ; we get
Nm == Vr’rk‘|+j_A/Vm

This completes the proof.

In the next proposition, we give a new expression of the éf@ — Hm(s) which could be used to compute a new upper
bound for the norm of the error on the transfer function.

Proposition 5. Under the hypothesis of Propositidn we have the following relation
H(S) — Hm(s) = C(sh — A) "V 1Nm(Shnp — Tm) 1 #1B, (12)

and we also have the upper bounds for the norm of the erroingiye

<] Ly
[IH(8) = Hm(s)|| < S — A INmll[}(Smp— Zm) ~*#5B| (12)

< LClIBIIA]

= |S|*||AH H(Slmp_ ym)ilH (13)

Proof.

H(S) — Hm(s) = C(Sh — A)~*B — Cm(Sknp— Jm)

(Sh—A) "B~ C¥n(Shmp— Tm)~ 17/*

(Sh—A) "B~ (Sh—A) #n(Slmp— Tm) 1 7B]
(Sh—A) "B~ (S/m— A%n) (Slmp— Tm) 1 71B].

|
O 0 O

We use the result of Propositidrand we obtain

H(S) — Hm(s) = C(sh — A) " [B— (S¥m — #nFim — Vint1Nm) (Sknp — Fin) "4 B]
=C(Sh—A) "B~ #n¥mB+Vins iNm(Shnp— Tm) " 7B].

Using the fact thaB is in the rational block Krylov subspaéén(A, B), it follows that
H(S) — Hm(S) = C(Sh — A) "V 1Nm(Slmp— Jim) *7B.

The relations12) are easily derived from the preceding relation.
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5 Numerical experiments

In this section, we give some numerical examples to showftbetazeness of our adaptive rational block Arnoldi method
denoted byaARAM when compared to the rational block Arnoldi metiad! with a priori choice of shifts using the Matlab
functionlp_para [23)], the iterative rational Krylov algorithriRKA method proposed inp] and with the metho®KSM
introduced in §]. All the experiments were performed on a 1.3GHz Intel Cédaptop with 8Gb of RAM. The algorithms
were coded in Matlab R2010a. For all the tests, weBsetC' = rand(n, p). We used various benchmark matrices as
reported in Tablel.. We first compared our propos@dAM method , with the Rational Arnoldi MethathM for wich we

Table 1: Information for the test problems.

Matrix A | Sizen| ||Alle cond(A)
fdm 2500 | 2.9996e+005 1.0235e+003
fom 1006 | 1.8283e+04 | 1000

beam 348 5.6430e+003 3.7420e+007
CDplayer| 120 2.3095e+05 | 1.8149e+04

usedan priori choice of shifts calculated by the routibg_para from [23]. In the first experiment, we considered them
model and we comparetRAM and the rational block Arnoldi when using the shifts compguta 1p_para with m= 8
and 16.

i i
10 10 10° 10° 10 10 10 10 10 10° 10° 10 10 10
fraguency o fraguency o

Fig. 1: Thef ommodel: Comparison cfRAM andRAM with 1p_para. The erroromax(H (iw) — Hm(iw)) for w € [1,107]
with m= 8 (left) andm = 16 (right) (p=3).

In the second experiment, we compared the performancesafand IRKA for thef dmmodel. In Figure2, we plotted
the curve corresponding to the errors for the norm of thesteanfunctions for the metho@RKA and ARAM. For this
experiment, we considered tliém model from Tablel where the matriA is of dimensiom = 2500. The algorithmRKA
starts with a set of parameters chosen randomly as sugge$t].

We also compared the performanceAdfiM to the recent rational Krylov subspace methu$M developed in §] for
SISO systemsf = 1). In this example we consider tlt®player model. The metho®KSM starts with the two input
shifts:séo) =101 andsél) = 800+ i5.10* as suggested ir6] and the obtained results are shown in Figgire

For our last experiment, we considered the adaptive rdtidmeoldi algorithm with the modified version as described
Algorithm 2. This algorithm will be named Modified AdaptiveaBonal Block Arnoldi Method1ARAM. As a test model,

(© 2016 BISKA Bilisim Technology



NTMSCI 4, No. 2, 227-239 (2016)www.ntmsci.com BISKA 237

IHGien) - H_ (e Il

1 1 1 L L L
1’ 1’ il 10’ 10’ 10° 10° 10 10 10 10° 10 10 11
fregquancy o fraguancy o

Fig. 2: Thef dmmodel: Comparison of ARAM and IRKA. The erromaxH (iw) — Hm(iw)) for w € [1,10°] with m=8
(left) andm = 16 (right).

ARAM
———RKSM

L " . . ! L
10 10 10 10’ 10 10 10 10 10 10 10° 10 10 10
frequency o frequancy @

Fig. 3: TheCDpl ayer model . Comparison ofRAM andRKSM. The errorgmax(H (iw) — Hm(iw)) for w € [1,10°] with
m= 8 (left) andm = 16 (right).

we used theveam model from Tablel and we setn =5 andp = 3. The plots in Figurel show the original system
Omax(H(iw)) and its approximatiowmax(Hm(iw)) (left plot), and the associated exact ergafax(H (iw) — Hn(iw)) for
we [1,10°.

6 Conclusion

In the present paper, we considered new projection metlowasddel reduction in large scale linear dynamical systems.
The proposed methods are Krylov subspace type methods bagbe rational block Arnoldi algorithm. We proposed
a new procedure for selecting good parameter shifts needdeiproposed rational algorithm and we also give some
new algebraic relations. A modified version of the ratiorlatk Arnoldi algorithm was also proposed and new simple
Arnoldi-like relations were developed. The numerical Hssshow that the method is very attractive for sparse proble
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‘ . . . ; 3
exact il
10° b —— —approximated
N
2
0tk - L _
10’ ] e
E
i g 5
10 4 T .
1 g
o't 4 I
10° 4 0 1
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