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Abstract: In this paper, we investigate an approximate analysis cliaifleM /M /c retrial queue witke > 3 in which all servers are
subject to breakdowns and repairs. Arriving customers dhatunable to access a server due to congestion or failurehmase to
enter a retrial orbit for an exponentially distributed ambaf time and persistently attempt to gain access to a seswvabandon their
request and depart the system. Once a customer is admitéesktwice station, he remains there for a random duratighsentice is
complete and then depart the system. However, if the seailsrduring service, i.e., an active breakdown, the customay choose
to abandon the system or proceed directly to the retriat @rbile the server begins repair immediately. In the uni#éanodel, there
are no exact solutions when the number of servers exceedS baefore, we seek to approximate the steady-state j@trtblition
of the number of customers in orbit and the status oftteervers for the case of Markovian arrival and service tir@es.approach to
deriving the approximate steady-state probabilities eygh phase-merging algorithm.

Keywords: Retrial queue, Multi server, Breakdown and repair of servithase merging algorithm

1 Introduction

Queueing systems in which arriving customers who find altessrand waiting positions (if any) occupied may retry for
service after a period of time are called retrial queuesi&etueues have been widely used to model many problems in
telephone switching systems, telecommunication netwar&mputer networks and computer systems. For detailed
survey of retrial queues and bibliographical informati@e $-alin B], Artalejo [3], [4], [5], monograph by Falin and
Templeton §] and Gomez-Corral]]. Retrial queues with unreliable servers have been studljelulkarni and Choi
[11], Aissani and Artalejo I] and Brian p]. There are a great number of numerical and approximatioethoas
available. In this paper we will place more emphasis on théiems by phase merging algorithm outlined by Korolyuk
[10].

Our paper is organized as follows. In section 2, we provigefthmal model description and state the assumptions that
are needed to implement the approximation procedure. iossc3 and 4, the algorithm is formally reviewed. In section

5, we give an illustrate example. Applying it to our model, derive approximations for the steady-state probabilities
and several standard queueing performance measures.tionséc we assess the quality of the approximations by
comparing results with those obtained using direct truonatethod by M.G. Subramanian, Ayyappan and G. Sekar

[12.
2 Model description

We consider an unreliabM /M /c retrial queuing system in which customers arrive accortting Poisson process with
rateA (A > 0). If upon arrival, the customer finds one of the servers ddig not failed, he occupies him immediately.
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However, if customer does not find any available serversy bufailed) may join the retrial orbit with probability, or
abandons the system with probability-1g; (0 < g4 < 1). Customers who enter the orbit wait for an exponentially
distributed time with rateéd(6 > 0) before attempting to access a server again. The service timeassumed to be
exponentially distributed with meary fl. Failures for thec servers occur independently via a Poisson process with rate
& (& > 0) and the repair times for each server are exponentiallyilliged with rateo (a > 0). Furthermore, interarrival
times, service times, retrial times, interfailure timed agpair times are mutually independent.

This model accounts for both active and idle breakdowns.detive breakdowns, the customer that is preempted by a
server failure enters the retrial orbit with probabilify or abandons the service with probability-1s.

The state of the system can be described by a trivariateaticlprocess in continuous timgN(t), B(t),F(t)) : t > 0},
whereN(t) is the number of customers in the orbit at til®(t) is the number of busy servers at timandF(t) is the
number of failed servers at tinte

Since all the random times are exponentially distributbeé, $tochastic process is a continuous-time Markov chain
(CTMC) on the state spac&= {(i, j,k) :i >0,j+k<¢c, j,ke {0,1,2,...c}}. We assume that ds— « the steady-state
distribution of {(N(t),B(t),F(t)) : t > 0} exists.

Define p(i, j,k) as the limiting probability that the system is in the stdtej,k) where (i,j,k) € S. Defined
mathematically,
p(i, k) = im PN(t) =1,B(t) = },F(t) = k).

c1
Note that a set of onI)E n+ (2c+ 1) pairs of(j,k) are needed to completely characterize the status of therseat/any
time. Let us introducrgtlhe following algorithm which givéetordered pairs represents the number of busy servers and
the number of failed servers, respectively.

Var c: Integer,

begin

read (c) ;

for j=0 to c Do

for k=0 to c—i Do

write (j,K);

end.

3 Main results

e Mean Orbit Length

For the retrial queueing model withservers, it was shown that the steady-state distributitoisson with parameter
A /6. Therefore, the long-run mean orbit length is approximatedy expected value of this Poisson random variable.
DenotingN as the steady-state number of customers in orbit, the médirsime is approximated by

AQapPoc + j€aspjx+ Z (AGa+j€0t)pPjk
j+k<c j+k=c
j#0 j#0
0 Pj k
jtk#c

@ >
I

E[N] ~
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e Mean Number of customer in Service

Let Ns be defined as the random number of customers at the seneegppnoximate expression for the expected number
of customers at the servers can be computed using the apmatexsteady-state joint probabilities derived in the ltegt s
of the algorithm and it is given by

8

IO

e Seady-Sate System Sze and Sojourn Time

Let us defind. as the steady-state number of customers in the system calai@l it, we simply sum the expressions for
E[N] andE[Ng].
The steady-state mean sojourn tii&,follows directly from Little’s law.

~ E[N] + E[N]

L
L
W=~ %

Q

o Total Expected Time in Orbit

Due to server failure and blocking when making a retrialmfie customers may enter the orbit more than once. Therefore
the expected time a customer spends in orbit/i8 fimes the expected number of retrial attempts before gaiagtess

to the server. Defin¥ as the random number of retrials a customer performs urggiits access to a server. Thén

is a geometric random variable with paramepgr the steady-state probability that at least one server igai@. The
approximation fomy is given by

o0

Pu= i;(jg#p(i, 1:K))-

The expected number of retrials performEgy], is therefore, 1p, and letting\; be the random time spent in orbit once
they are there we have,

E[W] ~ (8pu) ™

Proof. To prove these results, a phase-merging algorithm develop&orolyuk [10] and Courtois 7] will be employed
and is summarized in the following sections.

3.1 The Phase-Merging Algorithm

Beginning with a CTMC on a state space that completely dessra retrial queueing system. The objective of the
phase-merging algorithm is to approximate the steadygtatbability distribution of{ (N(t),B(t),F(t)) : t > 0} by
approximating the conditional probability distributioffi the status of the servers and by approximating the marginal
probability distribution of the number of customers in ¢rfihe algorithm proceeds by partitioning the state spat®e in
disjoint and mutually exhaustive sets that correspondvel$eof the orbit. Each level is analysed as a CTMC from which
the approximate conditional probabilities are obtainedctElevel itself is subsequently considered as a state of an
aggregated CTMC where the transition rates between lewslespond to customers entering or leaving the orbit.
Analyzing this system of 'macrostates’ yields the appratenmarginal probability distribution of the number of
customers in the orbit. The product of the conditional andgimal probabilities is, therefore, the approximate joint
probability distribution of the level of the orbit and statwf the servers. Using this joint distribution, we then
approximate standard queueing performance measures.

(© 2016 BISKA Bilisim Technology
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To begin, we reduce the dimensionality of the state spacesbgidg X (t) as the status of the servers at tim@utlined
c-1

in Table 1), such thaX(t) € {1,2,3,4, ..., z n+ (2c+1)}.
n=1

State(], k) Index

(0,0) 1

(1,0) 2

(2,0) 3

(c;O) C—f.— 1

(0.1)

0.2)
c-1

(0.) > n+ (2+1)
n=1

Table 1: Substitution for server status.

The algorithm proceeds in the following manner. First, itiart the state spac&, into disjoint sets that are conditional
uponi such that,
SEUS, SNS =0, i#]j
i=0
c-1
whereS = (i,1):1=1,2,.., z n+ (2c+1),i > 0. This step results in an infinite number of classes (or wehich

A=1
can be analyzed individually.

Next we obtain the steady-state distribution of each classvel, S, by determining the infinitesimal generator matrix,
Qi defined by

i)y, (i.m)> I #m
Om=14 ; AinGms | =m
I£m
0, otherwise

Denote byg ; the steady-state conditional probability that the stafub@servers is state given there aré customers
c—-1
in orbit,i > 0,1 =1,2,..., z n+ (2c+1). Letting pi = [pi], we solve the system of equatiop®); = 0 andpie=1

n=1
(whereeis a column vector of ones ) to obtain the approximate prdivadistribution.

Following this, we merge, or aggregate, all states withedlassS, into one state corresponding to the level of orbit,
These 'macrostates ’ form the overall state space of the edengodel which are defined &= {i :i > 0}. The

(© 2016 BISKA Bilisim Technology
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infinitesimal generatoQy, of the merged model is

= Y Pl > it im)-

(i,hHes (J,mes;

Denotert as the marginal probability that there areustomers in the orbit. Letting the infinite-dimensionattee 7=
[, 8, 7B, ...], we solve the system of equation®y = 0 andrre = 1 to obtain the approximate steady-state marginal

probabilities.
c-1

p(i,1) ~ p(i,1) = pixm, >0, I:O,l,2,...,2n+ (2c+1).
f=1

Making use of these joint probabilities, we can obtain agpnations for the performance measures for the unreliable
c-servers retrial queue.

To illustrate the algorithm, we consider a reliaeM /c retrial queue whose customers arrive according to a Poisson
process with ratd . Each customer brings an exponential service requiremigmimean time 1.

Customers who find the servers busy enter the orbit with probabilgpr leave the system with probability-1s. The
time between retrials is exponentially distributed withanel/6. All times are assumed to be mutually independent.
Define the continuous-time stochastic procesg @§t),B(t)) : t > 0} whereN(t) is the number of customers in the
orbit at timet and B(t) is the number of busy servers at tinte The process is a CTMC on the state space
S={(i,j):i>0,j=0,1,2,...c}. For the purpose of illustrating the phase-merging alparitwe will assume the
system is stable and dengé, j) = limi_, P(N(t) = i,B(t) = j) as the limiting probability that the system is in state
(i,J),i >0,j =0,1,2,...c. Figure 1.

To make use of the algorithm we proceed as follows: Firstjtpar the state space into individual levels where the inde
of each level corresponds to the number of customers in thie Brenote this as class for leveli,i > 0. Note that each
class has an identical structure and, therefore, the gemeretrices,Q; are identical for alli > 0. This fact will be
extremely useful for analyzing the case of unreliable satve

A A
/'__\\/—\\‘/—\AZ/-\\
Level i — 1 : fe—1) —

Level |

Level i + 1

Fig. 1: Transition rate diagram for a reliablé/M /c retrial queue.
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Fig. 2: Transition rate diagram for level i: reliabM/M/c retrial queue .

Next we compute the steady-state conditional distributibtine status of the servers given thereiatastomers in orbit.
Denote these probabilities by, j = 0,1,2,...c, and it is easy to obtain the following conditional probétes for all
i > 0 by solving the balance equation system using the FormaléMaalculation Software.

The next step is to aggregate the states of each class to feemies of merged stateswherei > 0 and investigate the
transitions between them. The elements of the infinitesgaakrator matrix for the merged states are.

/\Spc\la >0, j=i+1
i6( prj/I i>0 j=i—-1
anJ = c-1
—[Aspei +16(% pjji)l, 1=]
cli J; j/i
0, otherwise.
c-1

Using the substitutions, = A SPgji andf = 6( Zo Pj k), we see that the analysis of this system is analogous  fi\é/ co
J:
queueing system. Thus, defining the steady-state margiolability vector ast= [, 74, 7, ...] we have,

1

= ye 2 ixo.

| >

(

Finally, the approximate steady-state distributiod @fi(t),B(t)) : t > 0} is given by

Gy A p _ . ;
pli.J) = Bl 1) = py < = DB )le A, i>0, j=01.2..c

3.2 Approximation Using the Phase-Merging Algorithm

We apply the phase-merging algorithm describedLi#] and [7] to the unreliableVl /M /c retrial queue. Recall that the
interarrival times, service and repair times, time betwiadares and time between retrials are all exponentiabyributed
with the parameters defined previously. Since the numbeustomers in the orbit can theoretically reach infinity, the
state space of the system can be partitioned into a coumahiber of classes. As noted previously, the state sBace
partitioned as the countable union
S=JS, SNS=0, i#]j
i=0

c-1
whereS = (i,1) : 1 =1,2,. Z n+ (2c+1),i > 0. Just as in the reliablel /M/c retrial queue, each class is identical

in structure so that only one class needs to be analyzed.

To determine the steady-state probabilities for the cBasiefine the stochastic proceg®8(t),F(t)) : t > 0} whereB(t)

(© 2016 BISKA Bilisim Technology
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represents the number of busy servers &ftd represents the number of failed servers at tin@early, the process is a
CTMC on the state spacé defined previously. Using the notation defined in Table 1 weotkep;; as the limiting
conditional probability of the servers being in sthgven that there arecustomers in orbit,

pyji = fim P(X(1) =I/N(t) =i),] = 1,2, .., :Zim (2c+1).

For each > 0, the transition rates for this process are described ig¢nerator matrixy;.

c—-1
Let pi be the steady-state conditional probability vector whgre [py;], | = 1,2,..., Z n+ (2c+1).
n=1

Solving the equationp;Q; = 0 andp;e = 1 yields the following system,

(A +¢&)P(0,0)i = HP,0)i + A P(0,1)]i
(A +(c—=1)&+H)p0)i = AP0)i +2HP2,0)i + AP
(A +(c—2)&+2U)pr2,0)i = A Proji + 3UPE0) + A P21

(A +&+(c—DU)Pc-1,0) = APc—20)i + CHP(c,0)i + O Pc—1,1)]i
CUP )i = A Pc-10)ji
A+ (= (+K)E+ ju+ka)pjwi = (] + D) HPjraki+ (K+1)aPjkiai +APj—1ki
+(c=(J+k=2)&pj k-1 with j+k<c, j#0,k#0
(JUH+ka)pj ki =APj_1xi+ (€= (j +k=1))&pjk_qwith j+k=c, j #0, k#0
(A +(c—=1)&+a)po.1)i = €& Po,0)i + HP(1.1) + 20 P0.2)]i
(A +(c—2)§+20)po2)i = (€—1)& Po.yji + HP(1.2)i + 3 P(03)]i
(A +(c—=3)&+3a)p(03)i = (€= 2)& Po2ji + U P(1,3)i + 40 Po.4))i

(A+&+(c—1)a)poc-1)i = 2 Poc—2ji + HP(1,c-1)i + CAPoc)ji
CaPoo)i = § Poc-1)|i

10
>pi=1
=]

The solutions to the conditional probabilities are obtdifar all i > 0 by solving the balance equations system using the
Formal Maple Calculation Software.

Aggregating the states of each cl&yields a system of macro-states which denote ias 0. The rates of transitions
between the "macro-states” are expressed in the infiniedgienerator matrix with elements,

AGaPoc+ J€qrpjk+ Z (Ada+ j€qs) Pk, i>0, j=i+1
g g
iG(Z Pj k) i>0, j=i—1
Gi,j = j+ks#c
AGaPoc+ jEprj,k+ Z ()\CIaJFjECIf)pj,kﬁLie( Z pj,k),i:j
g g e
0 otherwise .

(© 2016 BISKA Bilisim Technology
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To simplify the analysis of the merged states we use theviatig substitutions for,i > 0

A =AGaPoct S i€Qrpjk+ Y (Ada+jEanp
e e

Making the substitutions, the elements of the generatorixete,

A i>0, j=i+1
~_)ie, i>0, j=i-1
GI= _p i), i= '

0 otherwise

3

This new model is a state dependent birth-and-death pratesanalysis of which is analogous to t&M /o queueing
system. Using the method of arc cuts, we recursively solvthiosteady-state probability vecter= [, 15, 10, ...]

Amp = ém:nl:%nb
AT =20m = 1B = %(%)zno
ATp = 3075 = 16 = §(5) 70
AT = 4010 = 0 = 5(5)*m
Continuing inductively, it can easily be shown that,
1A .
m:i_'(g)'r@, i >0. (1)

00

Using the normalization equationy 75 = 1, the solution forrg is obtained by

(Gh=1 @

which is the probability mass function for a poisson distténl random variable with rate parame%er

(© 2016 BISKA Bilisim Technology
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Finally, we approximate the steady-state distributiof(@®f(t), X(t)) : t > 0} by

p(i,1) ~ B(i,1) = piji x 75
_% i c-1

= SH(G)e M0 120, 1=012.., F n+ (2c+1).
1 e
4 |1lustrative example: M/M /3.

We reduce the dimensionality of the state space by defiKiftyas the status of the servers at timsuch thatX(t) €
{1,2,3,4,5,6,7,8,9,10}.

State (j,k) Index
(0,0)
(1,0)
(2,0)
(3,0)
(1,1)
(2,1)
(1,2)
(0,1)
(0,2)
0.3

Boo~vouorwnpek

Table 2: Substitution for server status.

For each > 0, the transition rates for this process are described ifolleving generator matrixy;.

—(A+38) A 0 0 0 0 0 3 0 0
o —(A+u+28) A 0 2% 0 0 0 0 0
0 2u —(A+2u+8&) A 0 & 0 0 0 0
0 0 3 -3u 0 0 0 0 0 0
Q'* 0 a 0 0 —A+pu+a+@) A I3 u 0 0
e 0 0 a 0 2u —(a+2u) 0 0 0 0
0 0 0 0 bt 0 —(a+p) O u 0
a 0 0 0 A 0 0 —(A+28) 28 0
0 0 0 0 0 0 A 20 —(A+E&+2a) &
0 0 0 0 0 0 0 0 & —3a
Let p; be the steady-state conditional probability vector whgre [p;], | = 1,2,...,10. Solving the equationgQ; =0
andp;e = 1 yields the following system,
(A +3&)pyi = Hp2ji + O Pgj ©)
(A +2& + W) paji = A paji + 2UP3j + A Psji (4)
(A +&+21) psji = A poji + 3U P4 + A Peji (5)
3UpPgi = AP (6)
(A + &+ U+ a)psji = 2UPgji + 20 P7ji + A Pgji + 2€ Py (7

(© 2016 BISKA Bilisim Technology
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(2u+a)pgii = A psj + & pai (8)
(U +20)p7ji = A Pgji + 2& P )
(A +2& + a)pgji = 3& pyji + U Psji + 20 Pgji (10)
(A + & +2a) pgji = 2& pgji + U p7ji + 30 P1g; (11)
3ap1gi = € Py (12)
10

pi = 1. (13)

2P

Replacing Equationi(l) with the normalization equatiori8), the solution to the conditional probabilities are obgain
forall'i > 0, using the Maple Calculation Software

prji = D H6(—4a &3+ 2E3— 2820 +5uE°A — 40282 — Ao E? + TUPE2 + T3E + AA2UE + A apé
+ 100 u2E +4a?pE + 1IN P?E +4A B + 3022 + 70 + 9a A +2a3u+ 7Tap® + A3y
+4A%a 4+ 5a2uA +2ut)adu?)

P2ji = D7H(6(2u3 + 9u2E + Tau? + 4A 2+ 16u&? + 15a ué + 1A & + A ap + 7pa®+ 3uA? + 6&3
+A3 4+ 1IN E%+ 100824 140 & +6A2E +6a°E +5a°A +4A%a +2a3)Aadu?)

Paji = D323+ AA %+ 1128 + Tap? + A ap + 18UA E + 200 & + BUA2+ Tpa® + 24u&? + 5a2A
+8a2& +17aA& +TA%E +4A%2a +16AE2+18a &2+ 2a8 + A3+ 1283)A2a3))

Paji = D7H((2u3+ A %+ 1128 + Tap? + A ap+ 18UA & + 200 pé + 3uA2+ Tpa® + 24u&? + 5aA
+80%&8 +17aA & +TA%E +-4X%a +16A E2 + 18082 4-2a3 + A3+ 1283)A3%a3)

psji = D~1(6(6p3+ 2728 + 190 %+ 10A p2 + 440 & + 18N a p+ 28UA & + 5UA2+ 16pa’ + 36uE?
+160a28 + A3+ 24aE? + 16AE2 4 1283+ 22a A & +7A%E +8a2A +5A%a +4a®)a?uEA

Pe/i = D 1(3(6u3+ 10A p2 + 27u2E + 17a pu? 4 28U & +36a & + 36UE2+ 5uA2+ 150 u+ 11ua?
/
+5a°A + A3+ 8028 +17aA& +TA%E +4A%a + 16A E2+ 180 &2+ 2a° + 1283)E uA?a?

p7ji = D™Y(3(12u3 + 42028 + 14\ p? + 420 42+ 34110 + 33UA & + 42uE% + 84a & +33A ot + 6UA?
+80a°+3200A & + 7TA%E + 36082+ 140°A 4 32028 + TA%a + 1283+ 16A E2 + A3 aA E2u?

Pg/i = DH(6a%(13aUAE + 24PN E + 683U+ 6A2UE + 1IN E2 U — 2028 a — 100 A E2+ 2138 + 5422
+21u2E% + TuA2a — 120 E3 4+ pAB + 6u* + 10A uB + 308 p2a — 12a u &2+ 22a u?A + 21a B
—4AEa? — 120282+ 12a%ué + 13uaA 4 21u%a? + 6a3u) u2é)

(© 2016 BISKA Bilisim Technology
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Poji = D (Bap?E2(—14a A +33u%AE +12u83 - 223 + 7TA2E u+ 161 E%p — 14028 a — 3204 &2
+42u3E + 6U2A? + 428202 — pA2a — 24a &3+ uA3+ 12u% + 14A uB 4 60u2a é — 24uaé?
+21p2a A +42uBa — 248 a?A — 6a2A? — 248%a? 4 24a°uE + 8A pa’+ 42a°u? — Aha®
+12ua®))

Proji = D H(W2E3(—14E paA +33EA pu? 4 1283 — 23 + TA2uE + 16 &2 — 140 A2 — 32820\
+42UBE +BA2 U2 + 428217 — A2au — 240 E3 + uA S+ 12u* + 14 uB + 608 a u? — 248%ua
+21a pPA +42a B — 24X a2 — 6A2%a2 — 248202 + 248 o’ + 8A o’ + 4202 P — 4aPA

+12a3u)

where the constam is given by

D = 252u%82a? + 14A u5E3 + 16858 3a + 50002 1BE3A + 78\ au®E2 + 96A a2udE 4 42u58* + 360 ubE?
+60a°u3E +36a2u8E + 121883 + 4X apPES + 19X 3a 283 + 1081 202 + 720 a®ul + 512 2a®u?
+223a® 42223051 + 66a2u3EA3 + 304 u2E%a + 34022 a + 160N pu3E4a + 487 2adut + 42054
+2255 a*A2u? 4+ 60A2u*E%a + 246\ u*E3a + 21A 3usE2a + 12ubad + 420 u® + 4285u* + 6A 2a®u
+AX5a* + 33\ U+ BAZUAES + 186a U EA + ABUBES + TAPUBEA + 164 385 + 12a8A pu? + 12u8&°
+12a 385 — 1202384 — 240 u2EC + 34802t E3 + 2403 U3 E 3 — 96022 ES + 34803t E% + 8A3avE
+38A3a3 U8 + 997 2% B + 8404 uBE? — 144031284+ 36A a3 u® + 96A ot it + 19 a B 4 12a 83
+6A5a3 U+ TA%a3E + 1604382+ 12230383 + 2 4o u + 18X 3a 482 + 11N 2a u2E 3 4 308 a®A %
+17A%a%E + 495\ a2 E2 4+ 59403382\ + 25283X2a2 12 4 60a2u2A E4 + 348\ 238 ad + 3N Pa2ué
+14 328202 4 366A autE + 318 a*u3E + 3900 2a3u2E2 + 1400 aBu2E3 + 17603 u2A%E + A 8a®
+21IA%a?u%E +36UA2a2E* + 48uA 30283+ 123uA 30382 + 90uA 2aBER + 21A *a?ué? + 51 Yadué
+86A3a4E L+ 78N 20482 — 2405 u2E2 + B5A%a® + 1864 U*E + 60032 & — 9604 12E3 4 5804 12N 3
+168a3u5& + 381202382 + 1324 a*p?é2.

Aggregating the states of each claSs, The rates of transition between the 'macrostates’are esged in the
infinitesimal generator matrix

AQaPoji + € 0s Poji + 2805 P3ji + €Af Psji + (Ada+ 3E Q) Paji

+(Ada+2£05) psji + (AGa+ £0r) Py i>0,j=i+1
16(Pyji + P2ji + P3ji + Psji + Pgji + Poji)- i>0,j=i—1
e —[AGaP1gi + €At Poji +2€ s P3i + €At Psji + (AGa+ 3€As) Pgi + (Ada+2€ds) Pei+

(Ada+£&qr) Pz +10(pyji + Poji + Paji + Psji + Peji + Paji)] j=i

0, otherwise.

5 Numerical Experiments

In this section, we assess the quality of the phase-mergipgaimate for the unreliabliel /M /3 retrial queue. Using a
direct truncation methodLP], we will compare results for congestion.
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Fig. 3: Transition rate diagram for a reliable M/M/3 retrial queue .

I3 Phase-Merging Algorithm Direct Truncation Method
10.0000 0.0934 0.1326
5.0000 0.0448 0.0768

2.500 0.0236 0.0497
1.2500 0.0139 0.0364
0.6250 0.0083 0.0297
0.3125 0.0057 0.0264
0.1563 0.0045 0.0248
0.0781 0.0038 0.0240
0.0391 0.0035 0.0235
0.0195 0.0033 0.0233
0.0098 0.0033 0.0232

Table 3: Breakdown raté&) and mean number of customers in the orbit fo= 3, A =8, u =10, a =100 6 =100
andgy=qf = 1.

6 Conclusion

The primary aim of this work was to provide a formal analysishe unreliableM /M /c retrial queueing system with

¢ > 3. Applying a phase merging algorithm due to KorolydKj[and Courtois 7], we showed that the steady state orbit
length is approximately Poisson distributed. Using thisule we approximated the joint probability distributiohthe
number of customers in the orbit and the status of the servVhis enabled us to derive approximate expressions for the
steady state mean orbit length, mean number of customeesvite, mean number of customers in the system, the mean
system sojourn time and the mean orbit sojourn time. The nigail@xamples show that that means number of customers
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F] phase-merging Direct Truncation Method
10 0.935 0.9677
30 0.3117 0.3475
50 0.1870 0.2234
70 0.1336 0.1701
90 0.1042 0.1404
100 0.0935 0.1300
300 0.0311 0.0670
500 0.0187 0.0541
600 0.0155 0.0509
700 0.0133 0.0486
800 0.0116 0.0468
900 0.0103 0.0455
1000 0.0093 0.0444
2000 0.0046 0.0394
3000 0.0031 0.0378
4000 0.0023 0.0369
5000 0.0018 0.0364
6000 0.0015 0.0361

Table 4: Retrial rate(6) and mean number of customers in the orbit foe= 3, A =30, u =40, £ =10, a = 100 and
Ja=0s =1

in the orbit using the phase-merging algorithm decreasemuoickly than direct truncation method’s. Better yet, thes
results remain valid ifj; < 1 andqgs < 1.
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