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Abstract: In this paper, we investigate an approximate analysis of unreliableM/M/c retrial queue withc ≥ 3 in which all servers are
subject to breakdowns and repairs. Arriving customers thatare unable to access a server due to congestion or failure canchoose to
enter a retrial orbit for an exponentially distributed amount of time and persistently attempt to gain access to a server, or abandon their
request and depart the system. Once a customer is admitted toa service station, he remains there for a random duration until service is
complete and then depart the system. However, if the server fails during service, i.e., an active breakdown, the customer may choose
to abandon the system or proceed directly to the retrial orbit while the server begins repair immediately. In the unreliable model, there
are no exact solutions when the number of servers exceeds one. Therefore, we seek to approximate the steady-state joint distribution
of the number of customers in orbit and the status of thec servers for the case of Markovian arrival and service times.Our approach to
deriving the approximate steady-state probabilities employs a phase-merging algorithm.
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1 Introduction

Queueing systems in which arriving customers who find all servers and waiting positions (if any) occupied may retry for
service after a period of time are called retrial queues. Retrial queues have been widely used to model many problems in
telephone switching systems, telecommunication networks, computer networks and computer systems. For detailed
survey of retrial queues and bibliographical information see Falin [8], Artalejo [3], [4], [5], monograph by Falin and
Templeton [9] and Gomez-Corral [2]. Retrial queues with unreliable servers have been studiedby Kulkarni and Choi
[11], Aissani and Artalejo [1] and Brian [6]. There are a great number of numerical and approximations methods
available. In this paper we will place more emphasis on the solutions by phase merging algorithm outlined by Korolyuk
[10].

Our paper is organized as follows. In section 2, we provide the formal model description and state the assumptions that
are needed to implement the approximation procedure. In sections 3 and 4, the algorithm is formally reviewed. In section
5, we give an illustrate example. Applying it to our model, wederive approximations for the steady-state probabilities
and several standard queueing performance measures. In section 6, we assess the quality of the approximations by
comparing results with those obtained using direct truncation method by M.G. Subramanian, Ayyappan and G. Sekar
[12].

2 Model description

We consider an unreliableM/M/c retrial queuing system in which customers arrive accordingto a Poisson process with
rateλ (λ > 0). If upon arrival, the customer finds one of the servers idleand not failed, he occupies him immediately.
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However, if customer does not find any available servers ( busy or failed) may join the retrial orbit with probabilityqa or
abandons the system with probability 1− qa (0 ≤ qa ≤ 1). Customers who enter the orbit wait for an exponentially
distributed time with rateθ (θ > 0) before attempting to access a server again. The service times are assumed to be
exponentially distributed with mean 1/µ . Failures for thec servers occur independently via a Poisson process with rate
ξ (ξ > 0) and the repair times for each server are exponentially distributed with rateα(α > 0). Furthermore, interarrival
times, service times, retrial times, interfailure times and repair times are mutually independent.

This model accounts for both active and idle breakdowns. Foractive breakdowns, the customer that is preempted by a
server failure enters the retrial orbit with probabilityq f or abandons the service with probability 1− q f .

The state of the system can be described by a trivariate stochastic process in continuous time,{(N(t),B(t),F(t)) : t ≥ 0},
whereN(t) is the number of customers in the orbit at timet, B(t) is the number of busy servers at timet andF(t) is the
number of failed servers at timet.

Since all the random times are exponentially distributed, the stochastic process is a continuous-time Markov chain
(CTMC) on the state spaceS = {(i, j,k) : i ≥ 0, j+ k ≤ c, j,k ∈ {0,1,2, ...c}}. We assume that ast → ∞ the steady-state
distribution of{(N(t),B(t),F(t)) : t ≥ 0} exists.

Define p(i, j,k) as the limiting probability that the system is in the state(i, j,k) where (i, j,k) ∈ S. Defined
mathematically,

p(i, j,k) = lim
t→∞

P(N(t) = i,B(t) = j,F(t) = k).

Note that a set of only
c−1

∑
n=1

n+ (2c+1) pairs of( j,k) are needed to completely characterize the status of the servers at any

time. Let us introduce the following algorithm which gives the ordered pairs represents the number of busy servers and
the number of failed servers, respectively.
Var c: Integer;
begin
read (c) ;
for j = 0 to c Do
for k = 0 to c− i Do
write ( j,k);
end.

3 Main results

• Mean Orbit Length

For the retrial queueing model withc servers, it was shown that the steady-state distribution isPoisson with parameter
λ̂/θ̂ . Therefore, the long-run mean orbit length is approximatelythe expected value of this Poisson random variable.
DenotingN as the steady-state number of customers in orbit, the mean orbit size is approximated by

E[N]≈
λ̂
θ̂
=

λ qa p0,c + ∑
j+k<c

j 6=0

jξ q f p j,k + ∑
j+k=c

j 6=0

(λ qa + jξ q f )p j,k

θ ∑
j+k 6=c

p j,k
.
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• Mean Number of customer in Service

Let Ns be defined as the random number of customers at the servers, the approximate expression for the expected number
of customers at the servers can be computed using the approximate steady-state joint probabilities derived in the last step
of the algorithm and it is given by

E[Ns] =
∞

∑
i=0

(∑
j 6=0

p(i, j,k)).

• Steady-State System Size and Sojourn Time

Let us defineL as the steady-state number of customers in the system, to calculate it, we simply sum the expressions for
E[N] andE[Ns].
The steady-state mean sojourn time,W , follows directly from Little’s law.

L ≈ E[N]+E[Ns]

W ≈ L
λ .

• Total Expected Time in Orbit

Due to server failure and blocking when making a retrial attempt, customers may enter the orbit more than once. Therefore,
the expected time a customer spends in orbit is 1/θ times the expected number of retrial attempts before gaining access
to the server. DefineY as the random number of retrials a customer performs until itgains access to a server. ThenY
is a geometric random variable with parameterpu, the steady-state probability that at least one server is available. The
approximation forpu is given by

pu =
∞

∑
i=0

( ∑
j+k 6=c

p(i, j,k)).

The expected number of retrials performed,E[Y ], is therefore, 1/pu and lettingWr be the random time spent in orbit once
they are there we have,

E[Wr]≈ (θ pu)
−1.

Proof. To prove these results, a phase-merging algorithm developed by Korolyuk [10] and Courtois [7] will be employed
and is summarized in the following sections.

3.1 The Phase-Merging Algorithm

Beginning with a CTMC on a state space that completely describes a retrial queueing system. The objective of the
phase-merging algorithm is to approximate the steady-state probability distribution of{(N(t),B(t),F(t)) : t ≥ 0} by
approximating the conditional probability distribution of the status of the servers and by approximating the marginal
probability distribution of the number of customers in orbit. The algorithm proceeds by partitioning the state space into
disjoint and mutually exhaustive sets that correspond to levels of the orbit. Each level is analysed as a CTMC from which
the approximate conditional probabilities are obtained. Each level itself is subsequently considered as a state of an
aggregated CTMC where the transition rates between levels correspond to customers entering or leaving the orbit.
Analyzing this system of ’macrostates’ yields the approximate marginal probability distribution of the number of
customers in the orbit. The product of the conditional and marginal probabilities is, therefore, the approximate joint
probability distribution of the level of the orbit and status of the servers. Using this joint distribution, we then
approximate standard queueing performance measures.
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To begin, we reduce the dimensionality of the state space by definingX(t) as the status of the servers at timet (outlined

in Table 1 ), such thatX(t) ∈ {1,2,3,4, ...,
c−1

∑
n=1

n+ (2c+1)}.

State( j,k) Index
(0,0) 1
(1,0) 2
(2,0) 3

. .

. .

. .
(c,0) c+1

. .

. .

. .
(0,1)
(0,2)

. .

. .

. .

(0,c)
c−1

∑
n=1

n+ (2c+1)

Table 1: Substitution for server status.

The algorithm proceeds in the following manner. First, partition the state space,S, into disjoint sets that are conditional
uponi such that,

S ≡
∞
⋃

i=0

Si , Si ∩S j = /0, i 6= j

whereSi = (i, l) : l = 1,2, ...,
c−1

∑
n=1

n+ (2c+1), i ≥ 0. This step results in an infinite number of classes (or levels) which

can be analyzed individually.

Next we obtain the steady-state distribution of each class or level, Si, by determining the infinitesimal generator matrix,
Qi defined by

ql,m =















q(i,l),(i,m), l 6= m
− ∑

l 6=m

q(i,l)(i,m), l = m

0, otherwise

Denote byql/i the steady-state conditional probability that the status of the servers is statel, given there arei customers

in orbit, i ≥ 0, l = 1,2, ...,
c−1

∑
n=1

n+ (2c+ 1). Letting pi = [pl|i], we solve the system of equationspiQi = 0 andpie = 1

(wheree is a column vector of ones ) to obtain the approximate probability distribution.

Following this, we merge, or aggregate, all states within the classSi, into one state corresponding to the level of orbit,i.
These ’macrostates ’ form the overall state space of the merged model which are defined aŝS ≡ {i : i ≥ 0}. The

c© 2016 BISKA Bilisim Technology
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infinitesimal generator,QM, of the merged model is

qi, j ≡ ∑
(i,l)∈Si

pl/i( ∑
( j,m)∈S j

q(i,l),(i,m)).

Denoteπi as the marginal probability that there arei customers in the orbit. Letting the infinite-dimensional vector π ≡

[π0,π1,π2, ...], we solve the system of equationsπQM = 0 andπe = 1 to obtain the approximate steady-state marginal
probabilities.

p(i, l)≈ p̂(i, l) = pl|i ×πi, i ≥ 0, l = 0,1,2, ...,
c−1

∑
n=1

n+ (2c+1).

Making use of these joint probabilities, we can obtain approximations for the performance measures for the unreliable
c-servers retrial queue.

To illustrate the algorithm, we consider a reliableM/M/c retrial queue whose customers arrive according to a Poisson
process with rateλ . Each customer brings an exponential service requirement with mean time 1/µ .

Customers who find thec servers busy enter the orbit with probabilitys or leave the system with probability 1− s. The
time between retrials is exponentially distributed with mean 1/θ . All times are assumed to be mutually independent.
Define the continuous-time stochastic process as{(N(t),B(t)) : t ≥ 0} whereN(t) is the number of customers in the
orbit at time t and B(t) is the number of busy servers at timet. The process is a CTMC on the state space
S = {(i, j) : i ≥ 0, j = 0,1,2, ...c}. For the purpose of illustrating the phase-merging algorithm, we will assume the
system is stable and denotep(i, j) = limt→∞ P(N(t) = i,B(t) = j) as the limiting probability that the system is in state
(i, j), i ≥ 0, j = 0,1,2, ...c. Figure 1.

To make use of the algorithm we proceed as follows: First, partition the state space into individual levels where the index
of each level corresponds to the number of customers in the orbit. Denote this as classSi for level i, i ≥ 0. Note that each
class has an identical structure and, therefore, the generator matrices,Qi are identical for alli ≥ 0. This fact will be
extremely useful for analyzing the case of unreliable servers.

Fig. 1: Transition rate diagram for a reliableM/M/c retrial queue.
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Fig. 2: Transition rate diagram for level i: reliableM/M/c retrial queue .

Next we compute the steady-state conditional distributionof the status of the servers given there arei customers in orbit.
Denote these probabilities byp j|i, j = 0,1,2, ...c, and it is easy to obtain the following conditional probabilities for all
i ≥ 0 by solving the balance equation system using the Formal Maple Calculation Software.

The next step is to aggregate the states of each class to form aseries of merged states,i wherei ≥ 0 and investigate the
transitions between them. The elements of the infinitesimalgenerator matrix for the merged states are.

qi, j =







































λ spc|i, i ≥ 0, j = i+1

iθ (
c−1

∑
j=0

p j/i), i ≥ 0, j = i−1

−[λ spc|i + iθ (
c−1

∑
j=0

p j/i)], i = j

0, otherwise.

Using the substitutions,λ̂ = λ spc|i andθ̂ = θ (
c−1

∑
j=0

p j,k), we see that the analysis of this system is analogous to theM/M/∞

queueing system. Thus, defining the steady-state marginal probability vector asπ = [π0,π1,π2, ...] we have,

πi =
1
i!
(

λ
θ
)ie−λ/θ , i ≥ 0.

Finally, the approximate steady-state distribution of{(N(t),B(t)) : t ≥ 0} is given by

p(i, j) ≈ p̂(i, j) = p j|i ×πi =
p j|i

i!
(

λ
θ
)ie−λ/θ , i ≥ 0, j = 0,1,2, ...c.

3.2 Approximation Using the Phase-Merging Algorithm

We apply the phase-merging algorithm described in [10] and [7] to the unreliableM/M/c retrial queue. Recall that the
interarrival times, service and repair times, time betweenfailures and time between retrials are all exponentially distributed
with the parameters defined previously. Since the number of customers in the orbit can theoretically reach infinity, the
state space of the system can be partitioned into a countablenumber of classes. As noted previously, the state spaceS is
partitioned as the countable union

S =
∞
⋃

i=0

Si , Si ∩S j = /0, i 6= j

whereSi = (i, l) : l = 1,2, ...,
c−1

∑
n=1

n+ (2c+1), i ≥ 0 . Just as in the reliableM/M/c retrial queue, each class is identical

in structure so that only one class needs to be analyzed.

To determine the steady-state probabilities for the classSi define the stochastic process{(B(t),F(t)) : t ≥ 0} whereB(t)

c© 2016 BISKA Bilisim Technology
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represents the number of busy servers andF(t) represents the number of failed servers at timet. Clearly, the process is a
CTMC on the state spaceE defined previously. Using the notation defined in Table 1 we denote pl|i as the limiting
conditional probability of the servers being in statel given that there arei customers in orbit,

pl|i = lim
t→∞

P(X(t) = l/N(t) = i), l = 1,2, ...,
c−1

∑
n=1

n+ (2c+1).

For eachi ≥ 0, the transition rates for this process are described in thegenerator matrixQi.

Let pi be the steady-state conditional probability vector wherepi = [pl|i], l = 1,2, ...,
c−1

∑
n=1

n+ (2c+1).

Solving the equationspiQi = 0 andpie = 1 yields the following system,

(λ + cξ )p(0,0)|i = µ p(1,0)|i+α p(0,1)|i

(λ +(c−1)ξ + µ)p(1,0)|i = λ p(0,0)|i+2µ p(2,0)|i+α p(1,1)|i

(λ +(c−2)ξ +2µ)p(2,0)|i = λ p1,0|i +3µ p(3,0)|i+α p(2,1)|i
...

(λ + ξ +(c−1)µ)p(c−1,0)|i = λ p(c−2,0)|i+ cµ p(c,0)|i+α p(c−1,1)|i

cµ p(c,0)|i = λ p(c−1,0)|i

(λ +(c− ( j+ k))ξ + jµ + kα)p j,k|i = ( j+1)µ p j+1,k|i+(k+1)α p j,k+1|i+λ p j−1,k|i

+(c− ( j+ k−1))ξ p j,k−1|i with j+ k < c, j 6= 0, k 6= 0

( jµ + kα)p j,k|i = λ p j−1,k|i +(c− ( j+ k−1))ξ p j,k−1|iwith j+ k = c, j 6= 0, k 6= 0

(λ +(c−1)ξ +α)p(0,1)|i = cξ p(0,0)|i+ µ p(1,1)|i+2α p(0,2)|i

(λ +(c−2)ξ +2α)p(0,2)|i = (c−1)ξ p0,1|i+ µ p(1,2)|i+3α p(0,3)|i

(λ +(c−3)ξ +3α)p(0,3)|i = (c−2)ξ p0,2|i+ µ p(1,3)|i+4α p(0,4)|i
...

(λ + ξ +(c−1)α)p(0,c−1)|i = 2ξ p0,c−2|i+ µ p(1,c−1)|i+ cα p(0,c)|i

cα p(0,c)|i = ξ p(0,c−1)|i

10

∑
l=1

pl|i = 1

The solutions to the conditional probabilities are obtained for all i ≥ 0 by solving the balance equations system using the
Formal Maple Calculation Software.

Aggregating the states of each classSi yields a system of macro-states which denote asi, i ≥ 0. The rates of transitions
between the ”macro-states” are expressed in the infinitesimal generator matrix with elements,

qi, j =











































λ qa p0,c + ∑
j+k<c

j 6=0

jξ q f p j,k + ∑
j+k=c

j 6=0

(λ qa + jξ q f )p j,k, i ≥ 0, j = i+1

iθ ( ∑
j+k 6=c

p j,k), i ≥ 0, j = i−1

λ qa p0,c + ∑
j+k<c

j 6=0

jξ q f p j,k + ∑
j+k=c

j 6=0

(λ qa + jξ q f )p j,k + iθ ( ∑
j+k 6=c

p j,k), i = j

0 otherwise .
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To simplify the analysis of the merged states we use the following substitutions fori, i ≥ 0

λ̂ = λ qa p0,c + ∑
j+k<c

j 6=0

jξ q f p j,k + ∑
j+k=c

j 6=0

(λ qa + jξ q f )p j,k

θ̂ = θ ∑
j+k 6=c

p j,k.

Making the substitutions, the elements of the generator matrix are,

qi, j =



















λ̂ , i ≥ 0, j = i+1
iθ̂ , i ≥ 0, j = i−1
−[λ̂ + iθ̂ ], i = j
0, otherwise

.

This new model is a state dependent birth-and-death process, the analysis of which is analogous to theM/M/∞ queueing
system. Using the method of arc cuts, we recursively solve for the steady-state probability vector,π = [π0,π1,π2, ...]

λ̂π0 = θ̂π1 ⇒ π1 =
λ̂
θ̂ π0

λ̂π1 = 2θ̂π2 ⇒ π2 =
1
2(

λ̂
θ̂ )

2π0

λ̂π2 = 3θ̂π3 ⇒ π3 =
1
6(

λ̂
θ̂ )

3π0

λ̂π3 = 4θ̂π4 ⇒ π4 =
1
24(

λ̂
θ̂ )

4π0

.

Continuing inductively, it can easily be shown that,

πi =
1
i!
(

λ̂
θ̂
)iπ0, i ≥ 0. (1)

Using the normalization equation ,
∞

∑
j=0

π j = 1, the solution forπ0 is obtained by

π0+
1
2(

λ̂
θ̂ )

2π0+
1
6(

λ̂
θ̂ )

3π0+ ... = 1

π0(1+ λ̂
θ̂ + 1

2(
λ̂
θ̂ )+

1
6(

λ̂
θ̂ )

3π0+ ...) = 1

π0(
∞

∑
j=0

1
j!
(

λ̂
θ̂
) j) = 1. (2)

The infinite series of (2) is the Maclaurin power series expansion fore−λ̂/θ̂ . Thus, we see that

π0 = eλ̂/θ̂ .

Substitutingπ0 into Equation (1) we have the following expression,

πi =
1
i!
(

λ̂
θ̂
)ie−λ̂/θ̂

which is the probability mass function for a poisson distributed random variable with rate parameterλ̂
θ̂ .

c© 2016 BISKA Bilisim Technology
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Finally, we approximate the steady-state distribution of{(N(t),X(t)) : t ≥ 0} by

p(i, l) ≈ p̂(i, l) = pl|i ×πi

=
pl|i

i!
(

λ
θ
)ie−λ/θ , i ≥ 0, l = 0,1,2, ...,

c−1

∑
n=1

n+ (2c+1).

4 Illustrative example: M/M/3.

We reduce the dimensionality of the state space by definingX(t) as the status of the servers at timet, such thatX(t) ∈
{1,2,3,4,5,6,7,8,9,10}.

State (j,k) Index
(0,0) 1
(1,0) 2
(2,0) 3
(3,0) 4
(1,1) 5
(2,1) 6
(1,2) 7
(0,1) 8
(0,2) 9
(0,3) 10

Table 2: Substitution for server status.

For eachi ≥ 0, the transition rates for this process are described in thefollowing generator matrixQi.

Qi =

























−(λ +3ξ ) λ 0 0 0 0 0 3ξ 0 0
µ −(λ +µ +2ξ ) λ 0 2ξ 0 0 0 0 0
0 2µ −(λ +2µ +ξ ) λ 0 ξ 0 0 0 0
0 0 3µ −3µ 0 0 0 0 0 0
0 α 0 0 −(λ +µ +α +ξ ) λ ξ µ 0 0
0 0 α 0 2µ −(α +2µ) 0 0 0 0
0 0 0 0 2α 0 −(2α +µ) 0 µ 0
α 0 0 0 λ 0 0 −(λ +2ξ ) 2ξ 0
0 0 0 0 0 0 λ 2α −(λ +ξ +2α) ξ
0 0 0 0 0 0 0 0 3α −3α

























.

Let pi be the steady-state conditional probability vector wherepi = [pl|i], l = 1,2, ...,10. Solving the equationspiQi = 0
andpie = 1 yields the following system,

(λ +3ξ )p1|i = µ p2|i +α p8|i (3)

(λ +2ξ + µ)p2|i = λ p1|i +2µ p3|i+α p5|i (4)

(λ + ξ +2µ)p3|i = λ p2|i +3µ p4|i+α p6|i (5)

3µ p4|i = λ p3|i (6)

(λ + ξ + µ +α)p5|i = 2µ p6|i +2α p7|i+λ p8|i+2ξ p2|i (7)

c© 2016 BISKA Bilisim Technology
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(2µ +α)p6|i = λ p5|i + ξ p3|i (8)

(µ +2α)p7|i = λ p9|i +2ξ p5|i (9)

(λ +2ξ +α)p8|i = 3ξ p1|i+ µ p5|i+2α p9|i (10)

(λ + ξ +2α)p9|i = 2ξ p8|i + µ p7|i+3α p10|i (11)

3α p10|i = ξ p9|i (12)

10

∑
l=1

pl|i = 1. (13)

Replacing Equation (11) with the normalization equation (13), the solution to the conditional probabilities are obtained
for all i ≥ 0, using the Maple Calculation Software

p1/i = D−1(6(−4αξ 3+2µξ 3−2ξ 2αλ +5µξ 2λ −4α2ξ 2−4αµξ 2+7µ2ξ 2+7µ3ξ +4λ 2µξ +9λ αµξ
+10αµ2ξ +4α2µξ +11λ µ2ξ +4λ µ3+3λ 2µ2+7α2µ2+9αµ2λ +2α3µ +7αµ3+λ 3µ

+4λ 2αµ +5α2µλ +2µ4)α3µ2)

p2/i = D−1(6(2µ3+9µ2ξ +7αµ2+4λ µ2+16µξ 2+15αµξ +15λ µξ +9λ αµ +7µα2+3µλ 2+6ξ 3

+λ 3+11λ ξ 2+10αξ 2+14αλ ξ +6λ 2ξ +6α2ξ +5α2λ +4λ 2α +2α3)λ α3µ2)

p3/i = D−1(3(2µ3+4λ µ2+11µ2ξ +7αµ2+9λ αµ +18µλ ξ +20αµξ +3µλ 2+7µα2+24µξ 2+5α2λ
+8α2ξ +17αλ ξ +7λ 2ξ +4λ 2α +16λ ξ 2+18αξ 2+2α3+λ 3+12ξ 3)λ 2α3µ)

p4/i = D−1((2µ3+4λ µ2+11µ2ξ +7αµ2+9λ αµ +18µλ ξ +20αµξ +3µλ 2+7µα2+24µξ 2+5α2λ
+8α2ξ +17αλ ξ +7λ 2ξ +4λ 2α +16λ ξ 2+18αξ 2+2α3+λ 3+12ξ 3)λ 3α3)

p5/i = D−1(6(6µ3+27µ2ξ +19αµ2+10λ µ2+44αµξ +18λ αµ +28µλ ξ +5µλ 2+16µα2+36µξ 2

+16α2ξ +λ 3+24αξ 2+16λ ξ 2+12ξ 3+22αλ ξ +7λ 2ξ +8α2λ +5λ 2α +4α3)α2µ2ξ λ

p6/i = D−1(3(6µ3+10λ µ2+27µ2ξ +17αµ2+28µλ ξ +36αµξ +36µξ 2+5µλ 2+15αλ µ +11µα2

+5α2λ +λ 3+8α2ξ +17αλ ξ +7λ 2ξ +4λ 2α +16λ ξ 2+18αξ 2+2α3+12ξ 3)ξ µλ 2α2

p7/i = D−1(3(12µ3+42µ2ξ +14λ µ2+42αµ2+34µα2+33µλ ξ +42µξ 2+84αµξ +33λ αµ +6µλ 2

+8α3+32αλ ξ +7λ 2ξ +36αξ 2+14α2λ +32α2ξ +7λ 2α +12ξ 3+16λ ξ 2+λ 3)αλ ξ 2µ2

p8/i = D−1(6α2(13αµλ ξ +24µ2λ ξ +6ξ 3µ +6λ 2µξ +11λ ξ 2µ −2λ 2ξ α −10αλ ξ 2+21µ3ξ +5λ 2µ2

+21µ2ξ 2+7µλ 2α −12αξ 3+ µλ 3+6µ4+10λ µ3+30ξ µ2α −12αµξ 2+22αµ2λ +21αµ3

−4λ ξ α2−12α2ξ 2+12α2µξ +13µα2λ +21µ2α2+6α3µ)µ2ξ )
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p9/i = D−1(3αµ2ξ 2(−14αµλ ξ +33µ2λ ξ +12µξ 3−2λ 3α +7λ 2ξ µ +16λ ξ 2µ −14λ 2ξ α −32αλ ξ 2

+42µ3ξ +6µ2λ 2+42ξ 2µ2− µλ 2α −24αξ 3+ µλ 3+12µ4+14λ µ3+60µ2αξ −24µαξ 2

+21µ2αλ +42µ3α −24ξ α2λ −6α2λ 2−24ξ 2α2+24α2µξ +8λ µα2+42α2µ2−4λ α3

+12µα3))

p10/i = D−1(µ2ξ 3(−14ξ µαλ +33ξ λ µ2+12ξ 3µ −2λ 3α +7λ 2µξ +16λ ξ 2µ −14αξ λ 2−32ξ 2αλ
+42µ3ξ +6λ 2µ2+42ξ 2µ2−λ 2αµ −24αξ 3+ µλ 3+12µ4+14λ µ3+60ξ αµ2−24ξ 2µα
+21αµ2λ +42αµ3−24λ α2ξ −6λ 2α2−24ξ 2α2+24ξ α2µ +8λ α2µ +42α2µ2−4α3λ

+12α3µ)

where the constantD is given by

D = 252µ5ξ 2α2+14λ µ5ξ 3+168µ5ξ 3α +500α2µ3ξ 3λ +78λ αµ5ξ 2+96λ α2µ5ξ +42µ5ξ 4+36αµ6ξ 2

+60α5µ3ξ +36α2µ6ξ +12µ6ξ 3+4λ αµ2ξ 5+19λ 3αµ2ξ 3+108λ 2α2µ4ξ +72λ α5µ3+51λ 2α5µ2

+2λ 3α6+22λ 3α5µ +66α2µ3ξ λ 3+3λ 4µ2ξ 2α +34λ 2µ2ξ 4α +160λ µ3ξ 4α +48λ 2α3µ4+42α5µ4

+225ξ α4λ 2µ2+60λ 2µ4ξ 2α +246λ µ4ξ 3α +21λ 3µ3ξ 2α +12µ6α3+42α4µ5+42ξ 5µ4+6λ 2α6µ
+4λ 5α4+33λ µ4ξ 4+6λ 2µ4ξ 3+186αµ4ξ 4+λ 3µ3ξ 3+7λ 2µ3ξ 4+16λ µ3ξ 5+12α6λ µ2+12µ3ξ 6

+12αµ3ξ 5−12α2µ3ξ 4−24αµ2ξ 6+348α2µ4ξ 3+24α3µ3ξ 3−96α2µ2ξ 5+348α3µ4ξ 2+8λ 3α5ξ
+38λ 3α3µ3+99λ 2α4µ3+84α4µ3ξ 2−144α3µ2ξ 4+36λ α3µ5+96λ α4µ4+19λ 4α3µ2+12α6µ3

+6λ 5α3µ +7λ 5α3ξ +16λ 4α3ξ 2+12λ 3α3ξ 3+21λ 4α4µ +18λ 3α4ξ 2+119λ 2αµ3ξ 3+30ξ α5λ 2µ
+17λ 4α4ξ +495λ α2µ4ξ 2+594α3µ3ξ 2λ +252ξ 3λ 2α2µ2+60α2µ2λ ξ 4+348λ 2µ3ξ α3+3λ 5α2µξ
+141λ 3µ2ξ 2α2+366λ α3µ4ξ +318λ α4µ3ξ +390λ 2α3µ2ξ 2+140λ α3µ2ξ 3+176α3µ2λ 3ξ +λ 6α3

+21λ 4α2µ2ξ +36µλ 2α2ξ 4+48µλ 3α2ξ 3+123µλ 3α3ξ 2+90µλ 2α3ξ 3+21λ 4α2µξ 2+51λ 4α3µξ
+86λ 3α4ξ µ +78λ 2α4ξ 2µ −24α5µ2ξ 2+5λ 4α5+186α4µ4ξ +60α5µ2λ ξ −96α4µ2ξ 3+58α4µ2λ 3

+168α3µ5ξ +381λ 2α2µ3ξ 2+132λ α4µ2ξ 2.

Aggregating the states of each classSi , The rates of transition between the ’macrostates’are expressed in the
infinitesimal generator matrix

qi, j =















































































λ qa p10|i + ξ q f p2|i +2ξ q f p3|i + ξ q f p5|i +(λ qa +3ξ q f )p4|i

+(λ qa +2ξ q f )p6|i +(λ qa + ξ q f )p7|i, i ≥ 0, j = i+1

iθ (p1|i + p2|i + p3|i+ p5|i+ p8|i + p9|i), i ≥ 0, j = i−1

−[λ qa p10|i + ξ q f p2|i +2ξ q f p3|i + ξ q f p5|i +(λ qa +3ξ q f )p4|i +(λ qa +2ξ q f )p6|i+

(λ qa + ξ q f )p7|i + iθ (p1|i+ p2|i + p3|i+ p5|i+ p8|i+ p9|i)], j = i

0, otherwise.

5 Numerical Experiments

In this section, we assess the quality of the phase-merging approximate for the unreliableM/M/3 retrial queue. Using a
direct truncation method [12], we will compare results for congestion.
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Fig. 3: Transition rate diagram for a reliable M/M/3 retrial queue .

ξ Phase-Merging Algorithm Direct Truncation Method
10.0000 0.0934 0.1326
5.0000 0.0448 0.0768
2.500 0.0236 0.0497
1.2500 0.0139 0.0364
0.6250 0.0083 0.0297
0.3125 0.0057 0.0264
0.1563 0.0045 0.0248
0.0781 0.0038 0.0240
0.0391 0.0035 0.0235
0.0195 0.0033 0.0233
0.0098 0.0033 0.0232

Table 3: Breakdown rate(ξ ) and mean number of customers in the orbit forc = 3, λ = 8, µ = 10, α = 100, θ = 100
andqa = q f = 1.

6 Conclusion

The primary aim of this work was to provide a formal analysis of the unreliableM/M/c retrial queueing system with
c ≥ 3. Applying a phase merging algorithm due to Korolyuk [10] and Courtois [7], we showed that the steady state orbit
length is approximately Poisson distributed. Using this result, we approximated the joint probability distribution of the
number of customers in the orbit and the status of the servers. This enabled us to derive approximate expressions for the
steady state mean orbit length, mean number of customers in service, mean number of customers in the system, the mean
system sojourn time and the mean orbit sojourn time. The numerical examples show that that means number of customers

c© 2016 BISKA Bilisim Technology



NTMSCI 4, No. 3, 9-21 (2016) /www.ntmsci.com 21

θ phase-merging Direct Truncation Method
10 0.935 0.9677
30 0.3117 0.3475
50 0.1870 0.2234
70 0.1336 0.1701
90 0.1042 0.1404
100 0.0935 0.1300
300 0.0311 0.0670
500 0.0187 0.0541
600 0.0155 0.0509
700 0.0133 0.0486
800 0.0116 0.0468
900 0.0103 0.0455
1000 0.0093 0.0444
2000 0.0046 0.0394
3000 0.0031 0.0378
4000 0.0023 0.0369
5000 0.0018 0.0364
6000 0.0015 0.0361

Table 4: Retrial rate(θ ) and mean number of customers in the orbit forc = 3, λ = 30, µ = 40, ξ = 10, α = 100 and
qa = q f = 1.

in the orbit using the phase-merging algorithm decrease more quickly than direct truncation method’s. Better yet, these
results remain valid ifqa < 1 andq f < 1.
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