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Abstract: In this paper, a new numerical method for solving a linear system of fractional integro-differential equations is presented.
The fractional derivative is considered in the Caputo sense. The proposed method is least squares method aid of shifted Chebyshev
polynomials of the third kind. The suggested method reducesthis type of systems to the solution of system of linear algebraic equations.
To demonstrate the accuracy and applicability of the presented method some test examples are provided. Numerical results show that
this approach is easy to implement and accurate when appliedto integro-differential equations. We show that the solutions approach to
classical solutions as the order of the fractional derivatives approach.
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1 Introduction

Many problems can be models by fractional integro-differential equations from various sciences and engineering

applications [12]. Furthermore most problems cannot be solved analytically, and hence finding good approximate

solutions, using numerical methods, will be very helpful. Recently, several numerical methods to solve system of

fractional differential equations (SFDEs) and fractionalintegro-differential equations (FIDEs) have been given. The

authors in ([3], [21]) applied collocation method for solving the following: nonlinear fractional Langevin equation

involving two fractional orders in different intervals andfractional Fredholm integro-differential equations. Chebyshev

polynomials method is introduced in ([4], [5], [7]) for solving multi-term fractional orders differential equations and

nonlinear Volterra and Fredholm integro-differential equations of fractional order, respectively. The authors in [8]

applied variational iteration method for solving fractional integro-differential equations with the nonlocal boundary

conditions. Adomian decomposition method is introduced in([9], [11], [15], [16]) to solve fractional integro-differential

equations. References ([13], [14]) used homotopy perturbation method for solving nonlinear Fredholm

integro-differential equations of fractional order and system of linear Fredholm fractional integro-differential equations.

Taylor series method is introduced in [1] for solving linearfractional integro-differential equations of Volterra type. In

[23] numerical solution of fractional integro-differential equations by least squares method and shifted Laguerre

polynomials pseudo-spectral method. Considerable attention has been given to the solutions of fractional differential

equations (FDEs) and integral equations of physical interest ([2], [8], [10], [16], [20]). Most non-linear FDEs do not have

exact analytic solutions, so approximate and numerical techniques ([17]-[19]) must be used. Many mathematical
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problems in science and engineering are set in unbounded domains. There is a need to consider practical design and

implementation issues in scientific computing for reliableand efficient solutions of these problems. Several numerical

methods to solve the FDEs have been given such as variationaliteration method [8], homotopy perturbation method

([13], [18]) and homotopy analysis method [6].

In this paper, least squares method with aid of shifted Chebyshev polynomials of the third kind method is applied to

solving system of fractional integro-differential equations. Least squares method has been studied in [22].

In this paper, we present numerical solution of the system ofintegro-differential equation with fractional derivative of the

type [16]:

Dαyi(x) = fi(x)+
∫ 1

0
ki(x, t)

(

n

∑
k=1

αikyk(t)

)

dt, i = 1,2, · · · ,n, 0≤ x, t ≤ 1, (1)

with initial conditions

y( j)
i (x0) = yi j i = 1,2, · · · ,n,

whereDαyi(x) indicates theαth Caputo fractional derivative ofyi(x). fi(x) andki(x, t) are given functions,x, t are real

varying in the interval[0,1] andyi(x) is the unknown functions to be determined.

2 Preliminaries and notations

In this section, we present some necessary definitions and mathematical preliminaries of the fractional calculus theory

required for our subsequent development.

Definition 1.The Caputo fractional derivative operator Dv of order v is defined in the following form:

Dv f (x) =
1

Γ (m− v)

∫ x

0

f (m)(t)
(x− t)v−m+1 dt, x> 0,

where, m−1< v≤ m, m∈ N.

Similar to integer-order differentiation, Caputo fractional derivative operator is a linear operation:

Dv(λ f (x)+ µg(x)) = λDv f (x)+ µDvg(x),

where,λ andµ are constants. For the Caputo’s derivative we have [12]:

DvC= 0, C is a constant, (2)

Dvxn =

{

0, for n∈ N0 and n< pvq;
Γ (n+1)

Γ (n+1−v)x
n−v for n∈ N0 and n≥ pvq.

(3)

We use the ceiling functionpvq to denote the smallest integer greater than or equal to v, andN0 = {0,1,2, · · ·}. Recall

that for v∈ N, the Caputo differential operator coincides with the usualdifferential operator of integer order.
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3 Some properties of Chebyshev polynomials of the third kind

3.1 Chebyshev polynomials of the third kind

The Chebyshev polynomialsVn(x) of the third kind are orthogonal polynomials of degreen in x defined on the interval

[−1,1] [19],

Vn =
cos(n+ 1

2)Θ
cos(Θ

2 )
,

where,x= cosΘ andΘ ∈ [0,π ]. They can be obtained explicitly using the Jacobi polynomials P(α ,β )
k (x), for the special

caseβ =−α = 1
2. These are given by:

Vk(x) =
22kP(−1/2,1/2)

k (x)(Γ (k+1))2

Γ (2k+1)
. (4)

Also, these polynomialsVn(x) are orthogonal on[−1,1] with respect to the inner product:

〈Vn(x),Vm(x)〉 =
∫ 1

0

√

1+ x
1− x

Vn(x)Vm(x)dx=

{

π , for n= m;

0, for n 6= m,
(5)

where

√

1+ x
1− x

is a weight function corresponding toVn(x). The polynomialsVn(x) may be generated by using the

recurrence relations

Vn+1(x) = 2xVn(x)−Vn−1(x), V0(x) = 1, V1(x) = 2x−1, n= 1,2, · · · .

The analytical form of the Chebyshev polynomials of the third kind Vn(x) of degree n, using Eq.(4) and properties of

Jacobi polynomials are given as:

Vn(x) =
[ 2n+1

2 ]

∑
k=0

(−1)k(2)n−k (2n+1)Γ (2n− k+1)
Γ (k+1)Γ (2n−2k+2)

(x+1)n−k, n∈ Z
+, (6)

where[2n+1
2 ] denotes the integer part of

(2n+1)
2

.

3.2 The shifted Chebyshev polynomials of the third kind

In order to use these polynomials on the interval[0,1], we define the so called shifted Chebyshev polynomials of the

third kind by introducing the change of variables= 2x−1 [19]. The shifted Chebyshev polynomials of the third kind are

defined asV∗
n (x) =Vn(2x−1).

These polynomials are orthogonal on the support interval[0,1] as the following inner product:

〈V∗
n (x),V

∗
m(x)〉 =

∫ 1

0

√

x
1− x

V∗
n (x)V

∗
m(x)dx=

{ π
2
, for n= m;

0, for n 6= m,
(7)
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where
√

x
1− x

is weight function corresponding toV∗
n (x), and normalized by the requirement thatV∗

n (1) = 1. The

polynomialsV∗
n (x) may be generated by using the recurrence relations

V∗
n+1(x) = 2(2x−1)V∗

n (x)−V∗
n−1(x), V∗

0 (x) = 1, V∗
1 (x) = 4x−3, n= 1,2, · · · .

The analytically form of the shifted Chebyshev polynomialsof the third kindV∗
n (x) of degreen in x is given by:

V∗
n (x) =

n

∑
k=0

(−1)k(2)2n−2k (2n+1)Γ (2n− k+1)
Γ (k+1)Γ (2n−2k+2)

(x)n−k, n∈ Z
+. (8)

In a spectral method, in contrast, the functiong(x), square integrable in[0,1] is represented by an infinite expansion of the

shifted Chebyshev polynomials of the third kind as follows:

g(x) =
∞

∑
i=0

biV
∗
i (x), (9)

wherebi is a chosen sequence of prescribed basis functions. One thenproceeds some how to estimate as many as possible

of the coefficientsbi , thus approximatingg(x) by a finite sum of(m+1)-terms such as:

gm(x) =
m

∑
i=1

biV
∗
i (x), (10)

where the coefficientsbi ; i = 0,1, · · · are given by

bi =
2
π

∫ 1

0
g(x)V∗

i (x)

√

x
1− x

dx. (11)

Theorem 1. (Chebyshev truncation theorem) [17] The error in approximating g(x) by the sum of its first m terms is

bounded by the sum of the absolute values of all the neglectedcoefficients. If

gm(x) =
m

∑
i=0

biVi(x), (12)

then

ET(m)≡
∣

∣

∣

∣

g(x)−gm(x)

∣

∣

∣

∣

≤
∞

∑
k=m+1

|bi|, (13)

for all g(x), all m, and all x∈ [−1,1].

4 Solution of system of linear fractional integro-differential equation

In this section, the least squares method with aid of shiftedChebyshev polynomial is applied to study the numerical

solution of these systems of fractional integro-differential (1).

The method is based on approximating the unknown functionsyi(x) as

yi(x) =
m

∑
j=0

ai
jV

∗
j (x), 0≤ x≤ 1, (14)
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whereV∗
j (x) is shifted Chebyshev polynomial of the third kind andai

j , i = 1,2, · · · ,n, are constants.

Substituting (14) into (1), we obtain

Dα
m

∑
j=0

ai
jV

∗
j (x) = fi(x)+

∫ 1

0
ki(x, t)

(

n

∑
k=1

αik

[

m

∑
j=0

ai
jV

∗
j (t)

])

dt. (15)

Hence the residual equation is defined as

Ri(x,a
i
0,a

i
1, · · · ,ai

m) =
m

∑
j=0

ai
jD

αV∗
j (x)−

∫ 1

0
ki(x, t)

(

n

∑
k=1

αik

[

m

∑
j=0

ai
jV

∗
j (t)

])

dt− fi(x). (16)

Let

Si(a
i
0,a

i
1, · · · ,ai

m) =

∫ 1

0
[R1(x,a

i
0,a

i
1, · · · ,ai

m)]
2 w(x)dx, (17)

wherew(x) is the positive weight function defined on the interval[0,1], in this work we takew(x) = 1, then

Si(a
i
0,a

i
1, · · · ,ai

m) =

∫ 1

0

{

m

∑
j=0

ai
jD

αV∗
j (x)−

∫ 1

0
ki(x, t)

(

n

∑
k=1

αik

[

m

∑
j=0

ai
jV

∗
j (t)

])

dt− fi(x)

}2

dx.
(18)

So finding the values ofai
j , j = 0,1, · · · ,m which minimizeSi is equivalent to finding the best approximation for the

solution of the SLFIDE (1).

The minimum value ofSi is obtained by setting

∂Si

∂ai
j

= 0, j = 0,1, · · · ,m, (19)

∫ 1

0

{

m

∑
j=0

ai
jD

αV∗
j (x)−

∫ 1

0
ki(x, t)

[

n

∑
k=1

αik

m

∑
j=0

ai
jV

∗
j (t)

]

dt− fi(x)

}

×
{

DαV∗
j (x)−

∫ 1

0
ki(x, t)

[

n

∑
k=1

αik

m

∑
j=0

V∗
j (t)

]

dt

}

dx= 0.

(20)

By evaluating the above equation forj = 0,1, · · · ,n we can obtain a system of(n+ 1) linear equations with(n+ 1)

unknown coefficientsai
j . This system can be formed by using matrices form as follows:

A=





























∫ 1
0 Ri(x,ai

0)h
i
0dx

∫ 1
0 Ri(x,ai

1)h
i
0dx · · · ∫ 1

0 Ri(x,ai
n)h

i
0dx

∫ 1
0 Ri(x,ai

0)h
i
1dx

∫ 1
0 Ri(x,ai

1)h
i
1dx · · · ∫ 1

0 Ri(x,ai
n)h

i
1dx

...
...

...
...

∫ 1
0 Ri(x,ai

0)h
i
ndx

∫ 1
0 Ri(x,ai

1)h
i
ndx · · · ∫ 1

0 Ri(x,ai
n)h

i
ndx





























, (21)
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B=





























∫ 1
0 fi(x)hi

0dx

∫ 1
0 fi(x)hi

1dx

...

∫ 1
0 fi(x)hi

ndx





























, (22)

where

Ri(x,a
i
j) =

m

∑
j=0

ai
jD

αV∗
j (x)−

∫ 1

0
ki(x, t)

[

n

∑
k=1

αik

m

∑
j=0

ai
jV

∗
j (t)

]

dt, (23)

hi
j = DαV∗

j (x)−
∫ 1

0
ki(x, t)

[

n

∑
k=1

αik

m

∑
j=0

V∗
j (t)

]

dt j = 0,1, · · · ,m, i = 1,2, · · · ,n. (24)

By solving the above system we obtain the values of the unknown coefficients and the approximate solutions of (1).

5 Numerical examples

In this section, we have applied shifted Chebyshev polynomials of the third kind for solving system of linear fractional

integro-differential equations with known exact solution. All results are obtained by using Mathematics Programming10.

Example 1.Consider the following system of fractional integro-differential equations [16]

D
2
3 y1(x) =

−x
6

+
3x

1
3

Γ (1
3)

+

∫ 1

0
2xt[y1(t)+ y2(t)]dt,

D
2
3 y2(x) =

5x3

6
+

9x
4
3

2Γ (1
3)

+

∫ 1

0
x3[y1(t)− y2(t)]dt.

(25)

Subject to initial conditionsy1(0) =−1, y2(0) = 0 with the exact solutiony1(x) = x−1,y2(x) = x2.

Applying the least squares method with aid of shifted Chebyshev polynomials collocation of third kindV∗
j (x),

j = 0,1, · · · ,n, at n = 4 to system of the linear fractional integro-differential equation (25). The numerical results are

showing in figure 1 and we obtain a system of linear equations with unknown coefficientsai
j , j = 0,1, · · · ,m,

i = 1,2, · · · ,n. The solution obtained using the suggested method is in excellent agreement with the already exact

solution and show that this approach can be solved the problem effectively. It is evident that the overall errors can be

made smaller by adding new terms from the series (14). Comparisons are made between approximate solutions and exact

solutions to illustrate the validity and the great potential of the proposed technique. Also, from our numerical results, we

can see that these solutions are in more accuracy of those obtained in [16].
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Fig. 1: Comparison between the approximate solution and the exact solution.

Example 2.Consider the following system of fractional integro-differential equations [16]

D
3
4 y1(x) =− 1

20
− x

12
+

4x
1
4 (15−23x2)

15Γ (1
4)

+

∫ 1

0
(x+ t)[y1(t)+ y2(t)]dt,

D
3
4 y2(x) =

5x3

6
+

9x
4
3

2Γ (1
3)

+

∫ 1

0

√
xt2[y1(t)− y2(t)]dt.

(26)

Subject to to initial conditionsy1(0) = 0, y2(0) = 0 with exact solutiony1(x) = x− x3, y2(x) = x2− x.

Similarly, as in Example 5.1 applying the least squares method with aid of shifted Chebyshev polynomials collocation

of third kindV∗
j (x), j = 0,1, · · · ,n at n= 4 to the fractional integro-differential equation (26). The numerical results are

showing figure 2 and we obtain the approximate solution whichis the same the exact solution. The solution obtained using

Fig. 2: Comparison between the approximate solution and the exact solution.

the suggested method is in excellent agreement with the already exact solution and show that this approach can be solved

the problem effectively. It is evident that the overall errors can be made smaller by adding new terms from the series (14).

Comparisons are made between approximate solutions and exact solutions to illustrate the validity and the great potential

of the proposed technique. Also, from our numerical resultswe can see that these solutions are in more accuracy of those

obtained in [16].
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Example 3.Consider the following system of fractional integro-differential equations [16]

D
4
5 y1(x) =

83x
80

+
25x

6
5 (11+15x)

33Γ (1
5)

+

∫ 1

0
2xt[y1(t)+ y2(t)]dt,

D
4
5 y2(x) =

5x3

6
+

9x
4
3

2Γ (1
3)

+
∫ 1

0
(x+ t)[y1(t)− y2(t)]dt.

(27)

Subject to initial conditionsy1(0) = 0, y2(0) = 0 with exact solutiony1(x) = x3− x2, y2(x) =
15
8

x2.

Similarly, as in examples 5.1 and 5.2 applying the least squares method with aid of shifted Chebyshev polynomials

collocation of third kindV∗
j (x), j = 0,1, · · · ,n at n= 4 to the fractional integro-differential equation (27). The numerical

results are showing in figure 3 and we obtain the approximation solution which is the same the exact solution.

Fig. 3: Comparison between the approximate solution and the exact solution.

6 Conclusion and Remarks

In this article, we introduced an accurate numerical technique for solving system of linear fractional integro-differential

equations. We have introduced an approximate formula for the Caputo fractional derivative of the shifted Chebyshev

polynomials of the third kind in terms of classical shifted Chebyshev polynomials of the third kind. The results show

that the proposed algorithm converges as the number of termsis increased. Some numerical examples are presented to

illustrate the theoretical results and compared with the results obtained by other numerical methods. We have computed

the numerical results using Mathematica programming 10.
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