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Abstract: In this paper, a new numerical method for solving a lineatesysof fractional integro-differential equations is pretsel.
The fractional derivative is considered in the Caputo sefibe proposed method is least squares method aid of shifiebdyShev
polynomials of the third kind. The suggested method redthissype of systems to the solution of system of linear algielequations.
To demonstrate the accuracy and applicability of the ptesemethod some test examples are provided. Numericakseshw that
this approach is easy to implement and accurate when agpliategro-differential equations. We show that the soliapproach to
classical solutions as the order of the fractional derrestiapproach.

Keywords: Linear system of fractional Fredholm integro-differehtguations; Caputo fractional derivative; Least squarethod,;
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1 Introduction

Many problems can be models by fractional integro-difféie@requations from various sciences and engineering
applications [12]. Furthermore most problems cannot b&esblnalytically, and hence finding good approximate
solutions, using numerical methods, will be very helpfuecBntly, several numerical methods to solve system of
fractional differential equations (SFDEs) and fractioirgkgro-differential equations (FIDEsS) have been givehe T
authors in ([3], [21]) applied collocation method for saigi the following: nonlinear fractional Langevin equation
involving two fractional orders in different intervals afrdctional Fredholm integro-differential equations. Ghshev
polynomials method is introduced in ([4], [5], [7]) for sahg multi-term fractional orders differential equationsda
nonlinear Volterra and Fredholm integro-differential atjons of fractional order, respectively. The authors ih [8
applied variational iteration method for solving fract&rintegro-differential equations with the nonlocal boand
conditions. Adomian decomposition method is introduce@9h [11], [15], [16]) to solve fractional integro-diffential
equations. References ([13], [14]) used homotopy pertimba method for solving nonlinear Fredholm
integro-differential equations of fractional order andtgyn of linear Fredholm fractional integro-differentiguations.
Taylor series method is introduced in [1] for solving lindactional integro-differential equations of Volterrgpty. In

[23] numerical solution of fractional integro-differeatiequations by least squares method and shifted Laguerre
polynomials pseudo-spectral method. Considerable &tehias been given to the solutions of fractional differainti
equations (FDEs) and integral equations of physical istgf2], [8], [10], [16], [20]). Most non-linear FDEs do noatie
exact analytic solutions, so approximate and numericatrtieges ([17]-[19]) must be used. Many mathematical
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problems in science and engineering are set in unboundedidenThere is a need to consider practical design and
implementation issues in scientific computing for reliaatel efficient solutions of these problems. Several numlerica
methods to solve the FDEs have been given such as variaitenation method [8], homotopy perturbation method
([13], [18]) and homotopy analysis method [6].

In this paper, least squares method with aid of shifted Céiedy polynomials of the third kind method is applied to
solving system of fractional integro-differential equaus. Least squares method has been studied in [22].

In this paper, we present numerical solution of the systemtegro-differential equation with fractional derivagiof the
type [16]:

D"yi (X) =fj (X) —l—/olkj(X,'[) <kiaikyk(t)> dt, i=12,---,n, 0<xt<1, Q)

with initial conditions
yI(J)(XO):yU i:1525"'7n7

whereD%y;(x) indicates thenth Caputo fractional derivative of (x).fi(x) andk;(x,t) are given functionsx,t are real
varying in the interval0, 1] andy;(x) is the unknown functions to be determined.

2 Preliminaries and notations

In this section, we present some necessary definitions atttematical preliminaries of the fractional calculus theor
required for our subsequent development.

Definition 1.The Caputo fractional derivative operatodf order v is defined in the following form:

versn 1 /X (M (t)
D f(x)_l'(mfv) A (Xit)vferldt, x>0,

where, m-1<v<m, meN.
Similar to integer-order differentiation, Caputo fractial derivative operator is a linear operation:

DY(Af(x) + ug(x)) = AD"F(x) + HDVG(x),

where,A andu are constants. For the Caputo’s derivative we have [12]:

D'C =0, Cis a constant, (2)
0 f N d v,

DY — { D) o ornc Ngand n< rvT 3)
Firv X forne Ngand n>"v.

We use the ceiling functidn/™ to denote the smallest integer greater than or equal to v,Mge- {0,1,2,---}. Recall
that for ve N, the Caputo differential operator coincides with the usdiffierential operator of integer order.
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3 Some properties of Chebyshev polynomials of the third kind

3.1 Chebyshev polynomials of the third kind

The Chebyshev polynomialg,(x) of the third kind are orthogonal polynomials of degreim x defined on the interval
~1,1] [9],
cogn+3)©
V= ——-—5—

cogg) ’

where,x = cos® and® < [0, r1]. They can be obtained explicitly using the Jacobi polynchsrﬁ’é“’m(x), for the special
case = —a = 3. These are given by:

2RV (k+1)?

Vi) I (2k+1) )
Also, these polynomialg,(x) are orthogonal ofi-1, 1] with respect to the inner product:
1T /1+x T forn=m;
Vin(X),Vin(X)) = Va(X)Vm(X)dx=14 ’ ’ 5
VA0 n00) = [/ T Vel Vin() {O, o m ©)
1 . . . . . :
where g; is a weight function corresponding ¥ (x). The polynomialsvy(X) may be generated by using the

recurrence relations
Vit1(X) = 2XVh(X) — Vi—1(X), Vo(x) =1, Vi(x) =2x—1, n=12---.

The analytical form of the Chebyshev polynomials of thedhimd V,(x) of degree n, using Edqlf and properties of
Jacobi polynomials are given as:

(25

ek 2n+1)r(2n—k+1)

Vo) = 3 @ I'(k+1)I'(2n—2k+2)(x+1>n7k’ nezr, ©)

. n+1
where[2%1] denotes the integer part S?ZL)

3.2 The shifted Chebyshev polynomials of the third kind

In order to use these polynomials on the interi@all], we define the so called shifted Chebyshev polynomials of the
third kind by introducing the change of variatse- 2x — 1 [19]. The shifted Chebyshev polynomials of the third kimd a
defined a§/3 (x) = Vn(2x—1).

These polynomials are orthogonal on the support intdéval as the following inner product:

. n forn=m
0050 = [y 5 v oo {3 " fnem !

)
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where 1—XX is weight function corresponding t4:(x), and normalized by the requirement th&t(1) = 1. The

polynomialsv;y(x) may be generated by using the recurrence relations
Vi1 (¥) = 2(2X= 1)V () =V (), V() =1, Vi(x)=4x—=3, n=12--.
The analytically form of the shifted Chebyshev polynoméishe third kindV,; (x) of degreen in xis given by:

n 2202 (2n+ 1) (2n—k+1)

Vﬁ(x>:k§o(il>k() r(k+1)r(2n_2k+2)(x)n7k’ nezt. 8)

In a spectral method, in contrast, the functiiir), square integrable if0, 1] is represented by an infinite expansion of the
shifted Chebyshev polynomials of the third kind as follows:

000 = 3 bW () ©

whereb; is a chosen sequence of prescribed basis functions. Onptbeseds some how to estimate as many as possible
of the coefficientdy, thus approximating(x) by a finite sum ofm+ 1)-terms such as:

Gn(%) = 3 BV (), (10)

where the coefficients;;i =0,1,--- are given by
2 . X
bi = E./o GOV (X)y / 7— dx (11)

Theorem 1. (Chebyshev truncation theorem) [17] The error in approximg g(x) by the sum of its first m terms is
bounded by the sum of the absolute values of all the negleogd@icients. If

an(%) = 5 BVI(0) 12

then

00

< Z |bi|a (13)

k=m+1

Er(m) = \g(x) — gm(¥)

for all g(x), all m, and all xe [-1,1].

4 Solution of system of linear fractional integro-differertial equation

In this section, the least squares method with aid of shi@hdbyshev polynomial is applied to study the numerical
solution of these systems of fractional integro-differair(tl).

The method is based on approximating the unknown functidmg as

Vi(X) = i)aijvj* (X), 0<x<1, (14)
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WhereVJ-* (x) is shifted Chebyshev polynomial of the third kind Eﬂidi =12,---,n, are constants.
Substituting 14) into (1), we obtain
) dt. (15)

DY Zm al Vi ( X)+ [ ki(xt) z a;
pA j J / < k )
)dt fi(X). (16)

3

Hence the residual equation is defined as

()

Ri(xaaimaia"'aain) maDaV KXt < o
) I - [xo(s

S

Let

S, oh) = [ IRaCc e b Pwixax an

wherew(x) is the positive weight function defined on the interf@ll], in this work we taken(x) = 1, then

S‘(aiovailv"' aa:n) =
/1{ mo 1 n m 2 (18)
al DIV (x) _/ ko) [ S aw| S avi®)] ] dt—fix b dx
0 j; i i o k; i J;) Vi
So finding the values oeﬁ , ] =0,1,--- ,mwhich minimize§ is equivalent to finding the best approximation for the
solution of the SLFIDEI)
The minimum value of is obtained by setting
S .
—=0 =01, 19
aa|J 3 J ) ) 5m5 ( )
1 . n m
a;DoV; / (%,1) dt — fi(x
F{ Bt [so |3 o5 i) o)
(20)

{Dav /K (xt) lz a,kzov }de.

By evaluating the above equation fpre= 0,1,--- ,n we can obtain a system ¢h+ 1) linear equations withfin+ 1)
unknown coefficienta‘j. This system can be formed by using matrices form as follows:

JAR(xahdx  [FR(xahhdx - [ER(x ah)hhdx

JoR(xap)hidx [y Ri(x.ahidx - [oRi(x a})hydx
A= , 1)

JoR(xaphhdx  [yRi(xa)hhdx - foRi(xap)hhdx
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Jo fi(x)hgelx

Ja fi(x)hidx

B= , (22)
Jo fi(Ohhdx
where
R(xa) =S aDV; (x) (X,t) l i (23)
i JZO / 2 Qi ZO
hl, = DoV ( / k(x,t) [Za,kzbv dtj=0,1,---,mi=12---.n. (24)

By solving the above system we obtain the values of the unkrmefficients and the approximate solutionsBf (

5 Numerical examples

In this section, we have applied shifted Chebyshev polyatswf the third kind for solving system of linear fractional
integro-differential equations with known exact solutiétl results are obtained by using Mathematics Programrihg

Example 1.Consider the following system of fractional integro-difatial equations [16]

2 X 3x3 1
DIy = o + r—l 4 / 2xtfya (t) +y2(t)]dt,

(25)

winy

5 Ox3
D3y,(x) = & +2,_ +/ ly1(t) —y2(t)]dt

Subiject to initial conditiong (0) = —1, y»(0) = 0 with the exact solutio (X) = x— 1,y»(X) = ¥2.

Applying the least squares method with aid of shifted Chebyspolynomials collocation of third kind/j*(x),
j=0,1,---,n, atn = 4 to system of the linear fractional integro-differentiguation (25). The numerical results are
showing in figure 1 and we obtain a system of linear equatioith wnknown coefficientsai, j = 0,1,---,m,

i =1,2,---,n. The solution obtained using the suggested method is inllerteagreement with the already exact
solution and show that this approach can be solved the probféectively. It is evident that the overall errors can be
made smaller by adding new terms from the series (14). Casyrer are made between approximate solutions and exact
solutions to illustrate the validity and the great potdrdfahe proposed technique. Also, from our numerical reswite

can see that these solutions are in more accuracy of thoametn [16].
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Fig. 1: Comparison between the approximate solution and the eshtien.

Example 2.Consider the following system of fractional integro-ditfatial equations [16]

s 115 _ 922 1
DI = 5535 gy, (UM Faltl

Wi

3 53  Ox
D3ya(x) = 5+ or (

! 2
S+ /0 VREIY(t) — ya(t)]dt.

Wi

Subject to to initial conditiong; (0) = 0, y2(0) = 0 with exact solutiory; (x) = X — X3, y2(X) = X% — X.

(26)

Similarly, as in Example 5.1 applying the least squares otkthith aid of shifted Chebyshev polynomials collocation
of third kind v} (x), j =0,1,--- ,n atn = 4 to the fractional integro-differential equation (26).€Thumerical results are
showing figure 2 and we obtain the approximate solution wisithe same the exact solution. The solution obtained using

—_— Approdmet Sdl o

— Approsdmat Sol iy

— Exact 3ol g

Fig. 2: Comparison between the approximate solution and the eshttien.

the suggested method is in excellent agreement with thadlrexact solution and show that this approach can be solved
the problem effectively. It is evident that the overall esroan be made smaller by adding new terms from the series (14)

Comparisons are made between approximate solutions antlsatations to illustrate the validity and the great poient

of the proposed technique. Also, from our numerical reauéian see that these solutions are in more accuracy of those

obtained in [16].
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Example 3.Consider the following system of fractional integro-difatial equations [16]

6
83x  25x3(11+ 15X) /1
X) = — 4 = 2xt[y (t t)]dt,

(27)

1
+/ (X+1)[ya(t) —yz(t)]dt.
0

Subiject to initial conditiongy (0) = 0, y»(0) = 0 with exact solutiory; (x) = x3 — X2, y»(x) = Be

Similarly, as in examples 5.1 and 5.2 applying the least irpuenethod with aid of shifted Chebyshev polynomials
collocation of third kindv;’(x), j = 0,1,--- ,natn= 4 to the fractional integro-differential equation (27).€Thumerical
results are showing in figure 3 and we obtain the approximatidution which is the same the exact solution.

oa

—_— Aporodrmat Sol v

Fig. 3: Comparison between the approximate solution and the eghtion.

6 Conclusion and Remarks

In this article, we introduced an accurate numerical tegivaifor solving system of linear fractional integro-diffatial
equations. We have introduced an approximate formula ferGaputo fractional derivative of the shifted Chebyshev
polynomials of the third kind in terms of classical shiftetigbyshev polynomials of the third kind. The results show
that the proposed algorithm converges as the number of termsreased. Some numerical examples are presented to
illustrate the theoretical results and compared with tiselte obtained by other numerical methods. We have computed
the numerical results using Mathematica programming 10.
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