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Rational approximations for solving cauchy problems
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Abstract: In this letter, numerical solutions of Cauchy problems are considered by multivariate Padé approximations (MPA).
Multivariate Padé approximations (MPA) were applied to power series solutions of Cauchy problems that solved by usingHe’s
variational iteration method (VIM). Then, numerical results obtained by using multivariate Padé approximations were compared with
the exact solutions of Cauchy problems.
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1 Introduction

In recent times, univariate and multivariate padé approximaton have been succesfully applied to various problems in

physical and engineering sciences [1-5]. “Pad́e approximant represents a function by the ratio of two polynomials. The

coefficients of the powers occurring in the polynomials are,however, determined by the coefficients in the Taylor series

expansion of the function[14]” . Multivariate Padé approximation is based on univariate Padé approximation [12] but

calculation methods and most of the theorems are different from each other [12]. Cuyt and her co-workers have

established the uniqueness, nonuniqueness and existence results for homogeneous and nonhomogeneous multivariate

Padé approximations of formal power series of several variables [15-17].

In many branches of applied sciences, the solution of a givenproblem is often obtained as a power series expansion. The

question is then trying to approximate the function from itsseries expansion. A possible answer is to construct a rational

function whose series expansion matches the original one asfar as possible. Such rational functions are called Padé

approximants [18]. In this paper, power series solutions ofCauchy problems were converted into multivariate Padé

series. That is, multivariate Padé approximations were applied to the first-order partial differential equation in the form

[6].

ut (x, t)+a(x, t)ux(x, t) = φ(x), x∈ ℜ, t > 0 (1)

u(x,0) = ψ(x), x∈ ℜ. (2)

The details about the above equations can be seen in [6].
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2 He’s variational iteration method

The basic concepts and principles of He’s variational iteration method can be seen in [7-11]. Zhou and Yao [6] obtained

the following iteration formula by using the basic conceptsand principles of He’s variational iteration method:

un+1(x, t) = un(x, t)−
∫ t

0

{

∂un (x,ξ )
∂ξ

+a(x,ξ )+
∂un (x,ξ )

∂ξ
−φ(x)

}

dξ . (3)

3 Multivariate Padé approximation

Consider the bivariate functionf (x,y) with Taylor power series development

f (x,y) =
∞

∑
i, j=0

ci j x
iy j (4)

around the origin [12]. The Padé approximation problem of order for f (x,y) consists in finding polynomials

p(x,y) =
m

∑
k=0

Ak (x,y) (5)

q(x,y) =
n

∑
k=0

Bk (x,y) (6)

such that in the power series( f q− p) (x,y) the coefficients ofxi andy j by solving the following equation system;























C0(x,y)B0(x,y) = A0(x,y)

C1(x,y)B0(x,y)+C0(x,y)B1(x,y) = A1(x,y)
...

Cm(x,y)B0(x,y)+ · · ·+Cm−n(x,y)Bn(x,y) = Am(x,y)

(7)















Cm+1(x,y)B0(x,y)+Cm+1−n(x,y)Bn(x,y) = 0
...

Cm+n(x,y)B0(x,y)+ · · ·+Cm(x,y)Bn(x,y) = 0

(8)

whereCk = 0 if k < 0. İf the equations (8) and (9) are solved then the coefficientsAk (k = 0, . . . ,m) andBk (k= 0, . . . ,n)

are obtained. So polynomials (5) and (6) are found. polynomialsp(x,y) andq(x,y) are called Padé equations[12]. So the

multivariate Padé approximant of order(m,n) for f (x,y) is defined as,

rm,n(x,y) =
p(x,y)
q(x,y)

. (9)

Theorem 1. (Cuyt and Wuytack [12]). For every nonnegative m and n a unique Pad́e approximant of order(m,n) for f

exists.

4 Applications and results

In this section multivariate Padé series solutions of Cauchy problems shall be illustrated by two examples. All the results

were calculated by using the software Maple. The full VIM solutions of examples can be seen in Zhou and Yao [6].
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Example 1.Consider the nonlinear cauchy problem [6]

ut (x, t)+ xux(x, t) = 0, x∈ ℜ, t > 0 (10)

u(x,0) = x2, x∈ ℜ. (11)

According to the iteration formula (3) Zhou and Yao [6] obtained following solution,

un(x, t) = x2

(

1−2t+
(2t)2

2!
−

(2t)3

3!
+

(2t)4

4!
−

(2t)5

5!
+ · · ·

)

(12)

The exact solution of (12) is given asu(x, t) = x2e−2t in [6]. If the multivariate Padé approximation is applied to equation

(12) form= 4 andn= 2, according to the equation system (7) and (8) the followingPadé equations are obtained;

p(x, t) =
4t4(t2

−3t+3)x6

9
(13)

and

q(x, t) =
4t4(t2+3t+3)x4

9
. (14)

So the multivariate Padé approximant of order(4,2) for equation (12) is,

r4,2(x, t) =
(t2

−3t+3)x2

(t2+3t+3)
. (15)

If the multivariate Padé approximation is applied to equation (12) form= 5 andn= 2, according to the equation system

(7) and (8) the following Padé equations are obtained,

p(x, t) =
4t6(2t3

−9t2+18t−15)x6

135
(16)

and

q(x, t) =
4t6(t2+4t+5)x4

45
. (17)

So the multivariate Padé approximant of order(5,2) for equation (12) is,

r5,2(x, t) =
(2t3

−9t2+18t−15)x2

3(t2+4t+5)
. (18)

If the multivariate Padé approximation is applied to equation (12) form= 6 andn= 2, according to the equation system

(7) and (8) the following Padé equations are obtained,

p(x, t) = 0.001975308642t8(2t4
−12t3+36t2

−60t+45
)

x6 (19)

and

q(x, t) = 0.005925925926t8(15+10t+2t2)x4. (20)
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So the multivariate Padé approximant of order(6,2) for equation (12) is,

r6,2(x, t) = 0.3333333333

(

2t4
−12t3+36t2

−60t+45
)

x2

15+10t+2t2 . (21)

If the numerical results are compared, following table and figures are obtained (Table 1 and Figure 1, Figure 2, Figure 3,

Figure 4. );

Fig. 1: Exact solution of equation (10) in
Example 1.

Fig. 2: (r4,2(x, t)), Multivariate Padé
approximant of order (4,2) for equation
(12).

Fig. 3: (r5,2(x, t)), Multivariate Padé
approximant of order(5,2) for equation (12).

Fig. 4: (r6,2(x, t)), Multivariate Padé
approximant of order(6,2)for equation (12).
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Table 1: Comparison of Exact solution of equation (10) and MPA solutions of equation (12).

x t
Exact solution
u(x, t) = x2e−2t r4,2(x, t) r5,2(x, t) r6,2(x, t)

0.001 0.001 0.9980019987×10−6 0.9980019987×10−6 0.9980019987×10−6 0.9980019986×10−6

0.002 0.002 0.3984031957×10−5 0.3984031957×10−5 0.3984031957×10−5 0.3984031956×10−5

0.003 0.003 0.8946161677×10−5 0.8946161676×10−5 0.8946161683×10−5 0.8946161676×10−5

0.004 0.004 0.00001587251064 0.00001587251064 0.00001587251063 0.00001587251064
0.005 0.005 0.00002475124584 0.00002475124584 0.00002475124585 0.00002475124583
0.006 0.006 0.00003557058166 0.00003557058166 0.00003557058167 0.00003557058166
0.007 0.007 0.00004831877967 0.00004831877967 0.00004831877967 0.00004831877966
0.008 0.008 0.00006298414849 0.00006298414848 0.00006298414850 0.00006298414846
0.009 0.009 0.00007955504362 0.00007955504362 0.00007955504363 0.00007955504363
0.01 0.01 0.00009801986733 0.00009801986733 0.00009801986733 0.00009801986732

Example 2.Consider the inviscid Burger’s equation [6]

ut (x, t)+u(x, t)ux(x, t) = 0, x∈ ℜ, t > 0 (22)

u(x,0) = x, x∈ ℜ. (23)

According to the iteration formula (3) Zhou and Yao [6] obtained following solution,

u4(x, t) = x− tx+ t2x− t3x+ t4x− 13t5x
15 + 2t6x

3 −
t7x
29 +

71t8x
252 −

86t9x
567

+ 22t10x
315 −

5t11x
189 + t12x

126 −
t13x
567 +

t14x
3969−

t15x
59535

(24)

The exact solution of (22) is given asu(x, t) = x
1+t in [13]. If the multivariate Padé approximation is appliedto equation

(24) form= 9 andn= 2, according to the equation system (7) and (8) the followingPadé equations are obtained;

p(x, t) = t16(197313169805t8+194795648572t7+161820668856t6

−247699921980t5+337516192020t4
−337516192020t3+337516192020t2

−307283385780t+673622025300)x3/9084507566400

(25)

and

q(x, t) = t16(2482168t2+30077064t+55305585)x2/745854480. (26)

So the multivariate Padé approximant of order(9,2) for equation (24) is,

r9,2(x, t) = (197313169805t8+194795648572t7+161820668856t6

−247699921980t5+337516192020t4
−337516192020t3+337516192020t2

−307283385780t+673622025300)x/(12180(2482168t2+30077064t+55305585))

(27)

If the multivariate Padé approximation is applied to equation (24) form= 11 andn= 2, according to the equation system

(7) and (8) the following Padé equations are obtained;

p(x, t) = t20(3332274t10+39785435t9+280716390t8

+240748200t7
−221629716t5+323269380t4

−323269380t3

+323269380t2
−195013980t+762297480)x3/881040604500

(28)
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and

q(x, t) = t20(390t2+1725t+2318)x2/2679075. (29)

So the multivariate Padé approximant of order(11,2) for equation (24) is,

r11,2(x, t) = (3332274t10+39785435t9+280716390t8

+240748200t7
−221629716t5+323269380t4

−323269380t3+323269380t2
−195013980t

+762297480)x/(328860(390t2+1725t+2318)).

(30)

If the multivariate Padé approximation is applied to equation (24) form= 13 andn= 2, according to the equation system

(7) and (8) the following Padé equations are obtained,

p(x, t) = 0.3378040082.10−12t24(39150t2
−261812t11

+0.1010766.107t10
−0.1330530.107t9+0.15064245.108t8

+0.9952740.107t7+0.16706088.108t6
−0.23480604.108t5

+0.29926260.108t4
−0.29926260.108t3+0.29926260.108t2

−0.26637660.108t +0.48342420..108t)x3

(31)

and

q(x, t) = 0.1110902261t24(147+66t+10t2)x2. (32)

So the multivariate Padé approximant of order(13,2) for equation (24) is,

r13,2(x, t) = 0.3040807638.10−5(39150t2
−261812t11

+0.1010766.107t10
−0.1330530.107t9+0.15064245.108t8

+0.9952740.107t7+0.16706088.108t6
−0.23480604.108t5

+0.29926260.108t4
−0.29926260.108t3+0.29926260.108t2

−0.26637660.108t +0.48342420..108t)x/(147+66t+10t2).

(33)

According to the numerical results following table and figures are obtained (Table 2 and Figure 5, Figure 6, Figure 7,

Figure 8. ),

Table 2: Comparison of Exact solution of equation (22) and MPA solutions of equation (24).

x t
Exact solution
u(x, t) = x

1+t
r9,2(x, t) r11,2(x, t) r13,2(x, t)

0.001 0.001 0.0009990009990 0.0009990009992 0.0009990009989 0.0009990009992
0.002 0.002 0.001996007984 0.001996007984 0.001996007984 0.001996007984
0.003 0.003 0.002991026919 0.002991026920 0.002991026919 0.002991026918
0.004 0.004 0.003984063745 0.003984063745 0.003984063744 0.003984063744
0.005 0.005 0.004975124378 0.004975124379 0.004975124378 0.004975124375
0.006 0.006 0.005964214712 0.005964214713 0.005964214711 0.005964214711
0.007 0.007 0.006951340616 0.006951340616 0.006951340616 0.006951340616
0.008 0.008 0.007936507937 0.007936507936 0.007936507936 0.007936507936
0.009 0.009 0.008919722498 0.008919722496 0.008919722499 0.008919722499
0.01 0.01 0.009900990099 0.009900990099 0.009900990099 0.009900990099
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Fig. 5: Exact solution of equation (22) in
Example 2.

Fig. 6: (r9,2(x, t)), Multivariate Padé
approximant of order(9,2)for equation (24).

Fig. 7: (r11,2(x, t)), Multivariate Padé
approximant of order (11,2) for equation
(24).

Fig. 8: (r13,2(x, t)), Multivariate Padé
approximant of order (13,2) for equation
(24).
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5 Conclusion

In this paper, rational series solution of various kinds of Caucy problems were constructed by multivariare Padé

approximation. The approximation is effective, easy to useand reliable and main benefit of the approximation is to offer

rational approximation in a rapid convergent rational series form.
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