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Abstract: The purpose of this paper is to investigate the use of exg@h&@hebyshev collocation method for solving systemsrogdir

ordinary differential equations with variable coefficieim unbounded domains, with most general form of conditidihe definition

of the exponential Chebyshev (EC) functions allows us td dé systems of differential equations defined in the whddtemain

and with infinite boundaries without singularities or diyence. The method transforms the system of differentiahégpns and the
given conditions to block matrix equation with unknown E@ffizients. By means of the obtained matrix equations, a rystem of

equations which corresponds to the system of linear algebrpations is gained. Numerical examples are includetustriate the
validity and applicability of the method.
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1 Introduction

In recent years, systems of high order ordinary differéetiations have been solved intensively by using appraeima
iterative methods such as variational iteration method, [differential transformation method [2], Adomian
decomposition method [3], differential transform methdd, [Homotopy analysis method [5]. In addition to these
methods, the spectral methods are also used to solvingnsysiklinear differential equations. Chebyshev colloaatio
method [6] and Taylor collocation method [7] are also applie solve these systems of differential equations. The
well-known Chebyshev polynomiak(t) are orthogonal polynomials on the interval [-1, 1], see T8lese polynomials
have many applications in numerical analysis and spece#hoas. One of the applications of Chebyshev polynomials is
the solution of systems of differential equations with ngixeonditions, with collocation points [6]. Therefore, this
limitation of the Chebyshev approach fails in the probleha aire naturally defined on all domains, especially incigdi
infinity. Under a transformation that maps the interval tlinto a semi-infinite domain [&), Boyd [9, 10], Parand and
Razzaghi [11, 12], Sezer et al. [13, 14], and Ramadan et 81181 successfully applied different spectral methods to
solve problems on semi-infinite domain. Recently, the auwsthad [20] have proposed modified form of Chebyshev
polynomials as an alternative to the solutions of the proislgiven in all domains. In their studies, the basis funation
called exponential Chebyshev functions (EEp)t)that are orthogonal ifi—eo, ). This kind of extension tackles the
problems over the whole real domain. The EC functions are€éfas

Ea(t) = Th (i—j) , M)
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where, the corresponding recurrence relation is

_d-1
S d4 1

é-1

Ensa() 2<—> En(t) —En_1(t). n>1 @)

Eo(t) =1, Ex(t) é+1

Now, in this paper we will use the EC collocation method fovsw systems of linear ordinary differential equations
with variable coefficients in unbounded domains, with masteyal form of conditions. The paper is organized as follows
In section 2, preliminaries introduced while in section ®gerties of the exponential Chebyshev (EC) functions are
presented. In section 4, we seek the form of the fundameratibxirelation based on collocation points. In section 5,

method of solution is presented. Finally, section 6 comstaimmerical illustrations and results that are comparel thig
exact solutions to demonstrate the applicability of thesene method.

2 Preliminaries

The system of high-order linear ordinary differential etjpras system considered here is a sekdhear differential
equations with variable coefficients of th#h order in the form [6]

niilp{} Oy () =fi(1),i=12... .k -
This system can be written in compact matrix notation as
3 (i)

i;Pi Oy () =f(), "

where thep( (t) and fi(t) are well defined functions on the inter(ateo, «0), where the matriceB (t), y (t) and f (t)
are of the form

[Py Py - P 0] [11(t)]
By Py - Pl ys (1) fa(t)
Pit)y=| =~ Y= |t =
| Pkt Pho -+ Piac _yf(i)(t)_ L f(®) |

We consider the above system under the most general forrmaftams defined as
m-1 _ _
Z} ay (@) + by (b) + ¢y (c) =A,—ow <a<c<b< o (5)
i=

where @, b;, ¢, andA are real valued vectors, aagdb maybe tends to the boundaries thad,id — +-co.

3 Properties of exponential Chebyshev (EC) functions

In this section we list some of the properties of the EC fuori

(© 2016 BISKA Bilisim Technology
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3.1 Orthogonality of EC functions

The weight functionw(t) corresponding to EC functions [20], such that they are gtinal in the interval £,c0) is
given byv€/ (¢ +1), with the orthogonality condition

[ " En(t)Em(t)w(t)dt = 2 S (6)
where
o 2, m=0
11, m#£0

anddnm is the Kronecker delta function. Also the product relatiéthe EC functions is

En()Em(t) = 3 [Enim(®) + En-m(0)] ™

which used in the derivative relations.

3.2 Function expansion in terms of EC functions

A function f (t) that well-defined over the intervako,»), may be expanded as

Nwi%am, ®)

where "
= — En(t) f(t)w(t)dt.
an -y n(t) f(Hw(t)

If f(t)in expressiong) is a truncated t?& < o in terms of the EC functions takes the form

N
f(t) ZoanEn(t), )

also, the K)th-order derivative of (t) can be written as
ﬂWU%%%EmWV (10)

where(En(t))© = En(t).

3.3 The derivatives relations

In the next proposition the operational matrix of the dameaof EC functions that introduced for first time in [20] is
presented and proved.

Proposition 1. The relation between the vecto(g and its (r)th-order derivative is given as

EO @) =E@®) (D), (11)

(© 2016 BISKA Bilisim Technology
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where, D is th€N + 1) x (N + 1)operational matrix for the derivative, and the general fasfithe matrix D is a tridiagonal
matrix which is obtained from

. [ i .
D=diag (Z’ 0, Z) , i=0/1,..,N (12)

Proof. Derivatives of the EC functions can be found by differeimigirelation @), and by the help off) we get

(Eolt)) =0, 13)
(B1(0) = sy = 30 3Eal) 1)
and )
(Ena(V) = &IPEL(0E() — En (0]

O (En()© — (En-1(t)))
J(En()© +2(Ex(t) @ (En(t) Y — (En-a(t) ™),

I

Hao
—~ 2%

N

—~

m

LN

—

~—+

N~—

|
N

that can be written as

!

(Bnsa(t)) = 2{(Ee(En(1)) } — (Bna(t) . (15)
By using the relationsl@)-(15) and by the help of product relatior)(for n= 0, 1, ..., N then we get

) = 3E1(t) — 3E3(b), (16)

(En(t)) = 2En_1(t) — DEnya(t), n>1

The above equalitiest ) form (N + 1) x (N + 2) rectangular matrix. Then a truncation to the last columesgjisquare
operational matrixD given in (12), then to obtain the matri€(") (t) we can useX6) as

E"(t) = E'(t)D" = (E()D")DT =E(t)(D")2,
EG)(t) 2 E”(t)DT = E(t)(D")3

3

then by induction we can write
EU(t) = E(®)(DT)". (17)

Proposition and its proof derived a regular scheme withdation in the matrixD, for the relation between the vector
E(t) and its ¢)th-order derivative.
Now, we turn to the improved scheme without any truncatiarttie relation ofE(t) and its ¢)th-order derivative that

leads us to get equality sign i), that introduced by us in [21] in next proposition.

Proposition 2. The derivatives of the vector(B=[Ep(t) Ei(t) .... En(t)], can be expressed with equality sign if we
added the truncated last column in the following form as

E'(t) = E(t)D" +B(t), (18)

(© 2016 BISKA Bilisim Technology
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where D is given in(2), and Bt) is 1 x (N + 1) row vector which was truncated {16) and will be the actual term to get
the equality sign of17). The row vector B) is deduced as shown next

Bt)=[0 0 .. O _TNENH(t)]. (19)

Consequently, to obtain the matriXx"Ht), we can us€18) as

E'(t) = E(1)DT +B(t),
(E(t)) =E/(t)DT +B/(t) = (E(t)DT +B(t)) DT +B/(t),

then by induction we find
r-1 .
EC)=E@t)(D") + Z}B“)(t) (D)1 r>1 (20)
i=

where

If N = 4 the form of D and B(t) is

000 0O
307200

D=|0 03 0|, B(t)=[00..0 —Es(t)
002 o 3
000 10

4 Fundamental matrix relation based on collocation points

In this section we will provide the fundamental matrix redatbased on collocation points of the solution 8, (with
mixed conditions%), by the representation of the derivative of EC functionggiin equationZ0).

Now, we define the collocation points [20] and [21], so that < ts < o, as

ts:

s
n ”LS(QT)  s=1 .. N-1 1)
1—cos(})

and at the boundaries i.&s=0, s=N) tg — o, ty — —oo, since the EC functions are convergent at both boundaries
+oo, i.e their values are-1. Then, the appearance of infinity in the collocation poddss not cause a problem in the

method or cause any divergence.
Now, assume that the solutioggt) of (3) can be expressed in the for®)(which is a truncated Chebyshev series in
terms of EC functions. They(t) and its derivativeyi“) (t) can be written in the matrix form as

Yi(t) = E(OA;, (22)

and .
vy =eWmA, i=12,...kj=01,....m (23)

where

(© 2016 BISKA Bilisim Technology
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Then, we substitute the collocation poin2d) into (4) to obtain the system

m
PYV =F, (24)
2"
where .
Pi(to) O 0 y¥ (to) f(to)
(i)
5 _ Pi(t) 0 YO = yW(ta) Fe f(ta) |
0 0 - Pity) y¥ (tn) f(tn)
Now, substituting relation23) into (20), we get
y(t) = ( t)(DT )k +Z)B DT"'1>A.. i=01,....m (25)

Hence, the matrix/()(t) defined as a column matrix that is formed ib¥f derivatives of unknown functions, can be

expressed by

k—1
yW(t) = <E(t)(DT)k+ Z)B‘”(t) (DT)"”> A, (26)
where
E(t) 0
0 E(t) 0 DT
E(t) = . ,

0 0 ---E( kxk kxk

Ao BO({) o0 0

A _ 0 Bt 0

A=l |, BO(t) = ()
A kx1 0 0 "'B(i)(t) kxk

Putting the collocation points, in relation £6) we have the matrix system

yW(ts) = <E(ts)(DT)k+ kZ;LB(” (ts) (DT)kil> A, @7)

this system can be written as

where
E(to) B(to)
e [EW ] 5 (B
E(tN) B(tN)

(© 2016 BISKA Bilisim Technology
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with the aid of this equation, expressiaf) becomes

Z)P. ( E(DT)* +ZjB (DTk1- 1)A F. (28)
Similarly, we form the matrix representations of the mixedditions.

Substituting the matriceg (a),y" (b) andy()(c) which depend on the exponential Chebyshev coefficientsixnatr
into (5) and simplifying the result we obtain

5Tt a (E@(DN) + 51380 () (D)) A
+bi (E(0)(D)F+ 5K3BOM) @A (29)
+6 (E@DN)F+ 515480 () (D)) A=)
5 The collocation method

The fundamental matrix equatiof8) for (4) corresponds to system kfN+1) algebraic equations fée(N+1) unknown
coefficientsgjg, aj1,...,an, 1 =1, 2,...,k.

Now, we can write equatior?g) in short form as:
WA=F or [W; F], (30)
We can obtain the matrix form for the conditior®,(by means of equation29) in a short form as
UA=[Aj], (31)

And, the definition oW andU is obtained as:

k—1
Wpgl %P,( E(D¥ +Z>B DT)k'1> p.g=12... kN+1)

similarly, the elements dfiformed by equationZ9).

Now, the solution of 8), under the conditions5§ can then be obtained by replacing the rows of matriéd} lfy some
rows of the matrix 80), we get the required augmented matrix

WA=F or [W;F]. (32)
Hence, EC coefficients can be simply computed and the appedgisolution of systenB) under the mixed conditions
(5) can be obtained.
6 Numerical test examples

In this section, six numerical test examples are given tesiithte the accuracy and effectiveness of our method. All
examples are performed on the computer using software @mogywritten in MATHEMATICA 7.0.

(© 2016 BISKA Bilisim Technology
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Example 1. First, we consider the simple system of constant coeffisient

X —y +y=tanh(}) 33)

2+sinh(t
X +y 4+x= 11;')”;;(“)) , —o<t<o®

with the conditionsx(0) = 0, and y(t) = 1 att — =, where the exact solutionst) = y(t) = tanh(}).For this example
we have,

k=2, m=1, fyt) =tanh(}), fa(t) = Z=08Ch () =0,
ng(t) =1, pgl(t) =1, ng(t) =0, p%l(t) =1, p%z(t) =-1
p%l(t) =1, p%z(t) =1

Then, forN = 2, the collocation points aig — 0, t; =0, t; — —oo, and the fundamental matrix of the problem using

our proposed method is
{(PoE(D")+PE(D"+B)JA=F,

wherePy, Py, E, D, B are matrices of order (66) given as:

[010000] (11 100 O]
100000 00 011 1

- 000100 ~ [10-100 0

Po = , E= ;
001000 00 010-1
000001 1-1100 0
1000010 00 0 1-11 |
[00 0 00 O] [00-100 0]
10-3000 00 0 00-3

D_ 05 0000 5_[000000
000000 00 0000’
00 03%0-1 0031 000
|00 0 03 O | |00 0003
[1-10 0 0 0]
110000

- 001-100 T

P~ 001100 JF=[1101-1-1] ,
0000 1-1
00001 1]

the augmented matrix for the given conditions with= 2 is

[10—1000;@,

for the first conditiorx(0) = 0, and for the other condition=1 att — o is

[000111;4.

(© 2016 BISKA Bilisim Technology
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Table 1: Numeric results of approximate and exact solution in exargpl

t  Exactsolution ux),N=8 u(x),)N=16 u(x),N=24
0.0 -1.000000 -1.00116 -1.000000 -1.000000
0.5  -0.886819 -0.887187  -0.886818 -0.886819
1.0 -0.648054 -0.645356 -0.648055 -0.648054
1.6  -0.387978 -0.385007  -0.387977 -0.387978
1.8  -0.321805 -0.319594  -0.321805 -0.321805
2.0 -0.265802 -0.264341 -0.265803 -0.265802
25  -0.163071 -0.162688  -0.163071 -0.163071
3.0 -0.0993279  -0.0991032 -0.0993274  -0.0993279

Table 2: Error norms of example 2.

Lo L. (max error)
N=8  6.671810° 0.00353909
N=16 7.4088610 12 1.04052x10°®
N=24 41817710718 7.72064x10°10

After the augmented matrices of the system and conditians@nputed, we obtain the coefficients solution as

A=[010010}T.

Therefore, we find the solutions as

OxEp+1xE;+0+E; andy(t) = OxEp+1xE;+0%Ep

or in the form x(t) = y(t) gﬁ = tanh(}), which represent the exact solution of this problem.

X(t)

Example 2. Itis clear that ifk = 1 in (3) the proposed system reduced to be high-order ordinamrdiftial equations and
that will be special case of our method. Boyd in his paper f#] his book [10] list some examples are naturally defined
in the infinite interval we apply our method to the transfodnagsociated Legender equation [22] in the following form

U’ + 2sed?(x)u = —sedh(x) (34)

equation 84) has exact solutioR[tanh(x)] whereP"[x] is the associated Legender polynomials and the transfamat
which produced equatior3g) made byx — tanhx).

Where the subjected conditions 034 are u(x) = 0 where |X| — . Some numeric results found in Table.1 of
approximate and exact solution with differeNtand Table.2 represent the error nofmsL.., where

L _ 2 . .
Lo = \/h % (yIExactf yIApprOXimat) ’ Lo = Max|ylExact7 yIApproximaJ :
=

where the Figure.2 obtained the comparison of absolutesatiN=8,16 and 24 and Figure.1 comparing the results of
exact and approximate solutionsN&t8,16 and 24 where e [—5,5].

(© 2016 BISKA Bilisim Technology
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\'\\\ L //./

AN -0z //
N r /
| ——— \\ : /_//
- N=8§ N —04
A L

L 7
3 L
N=24

1 —-0.8
\ [ 1
- Exact Sol

.
~1.04

Fig. 1: Exact and approximate solutions at
differentN.

Fig. 2. Comparison of absolute errors.

tends to infinity as

Xy xty= L

Example 3. Consider now the following linear system of first order witiriable coefficients and the subjected condition
(1+€)3

1 1, 12 (35)
X/+y,+mfx+mfy—m, —00 <t <o
with the conditionsx =0, y= 0 att — c,where the exact solutions axg) = Fler andy(t) =
andk=2, the fundamental matrix is

é

e Then, forN =4
{PoE (D")+P1E (D" +B)}A =F,
and the formed system becorti x 10), finally we obtain the coefficients as

Therefore, we find the solutiok(t) = 1Eo— 3E1 , and y(t) = 3Eo — E», or in the form

xt—l 1/é-1\ 1
()_E_E gr1) d+1
and
1 1
yit) =5 —

which is the exact solution of example 3.

Example 4. Consider the system of the form

X +Xx+y= —sed(t) (—2+tanh(t)),
X —y +x—2y=—sed(t),

36
—0 <t <o (36)
and the given conditions found &&) = 0, y(t) = 0 att — o, and exact solutions is

X(t) =
(© 2016 BISKA Bilisim Technology

y(t) =sed(t).
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Table 3: Error norms of example 2.

L, for x(t) Lo for y(t) Lo, for x(t) L for y(t)
N=6 0.00678295 0.0139659 0.0404235 0.0871772
N=10 6.2278k10°° 8.6045210°% 0.00451133 0.00283974
N=16 9.567551071°0 6.5506x1010 2.3491x10° 2.184x10°°

Table 4: Numeric results approximate and exact solution in example 4

t Exact  x(t),N=10 y(t),N=10 x(t),N=16 y{t),N=16
-3.0 0.0993279 0.0948166  0.0964882  0.0993514  0.0993061
-25 0.163071 0.158355 0.163204 0.163048 0.163061
-2.0  0.265802 0.26457 0.26707 0.265806 0.265800
-1.8  0.321805 0.322034 0.322959 0.321813 0.321802
-1.6  0.387978 0.389091 0.388816 0.387980 0.387975
-1.0 0.648054  0.648187 0.648181 0.648054 0.648054
-0.5 0.886819 0.886735 0.886999 0.886817 0.886820
0.0 1.000000 1.000000 0.999783 1.000000 0.999999
0.5 0.886819 0.886968 0.887074 0.886819 0.886820
1.0 0.648054  0.648059 0.647989 0.648054 0.648054
1.6 0.387978 0.387927 0.387924 0.387978 0.387978
1.8 0.321805 0.321803 0.321835 0.321805 0.321804
2.0 0.265802 0.265833 0.265873 0.265802 0.265802
25 0.163071 0.163100 0.163102 0.163071 0.163071
3.0 0.0993279 0.0993268  0.0993085 0.0993279  0.0993278

— y(DApp Sol

— x(App Sol

- Exact Sol

-6 -4

Fig. 3: Exact and approximat®&l = 10.

y(©App Sol

x(t)App Sol

Exact Sol

Fig. 4: Exact and approximat®l = 16.

The numerical solutions obtained using the proposed mdtivdd = 6, N = 10 andN = 16 are compared with the exact
solution in Table.4 where Table.3 shows the error noktmd «, to estimate the errors at the differamtFigure.3 show
the exact and approximate solutions at diffefént € [—6, 6]. In Figure.4 the comparison of the absolute errors(bf,
y(t)for the three casd¥=6, 10, and 16 are given, and show that the gredtgive good accuracy.

Example 5. Consider the second order system of two equations as

I r oy 1136
Xy =x= (1+¢)°

(37)
1
y'+2x =— 1+-cosh)

—00 <t <o

(© 2016 BISKA Bilisim Technology
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Fig. 5: Comparison of absolute errorsxit). Fig. 6: Comparison of absolute errorsyit).

with conditionsx(0) = 3, y(0) = 1, x=0 att — 0, andy = 1 att — oo,
where the exact solutions takenxs) = 5 andy(t) = 1.
In this example we havé,=2, m=2

The fundamental matrix of this problem using our proposethoekis

{PoE (DT)+P [E(D")+ 8] + P, [E(DT)?+BDT+ B } A =

For N=4, we have the coefficient solution as

A=[%-3000100 oof,

Therefore, we find the solution L L
X(t) = 5Eo(t) — 5Ex(t)  and yt) = Eo(t).

or in the form
NPT S Lt D
2 2\eé+1) €é+1

y(t) =1,

and

which is the exact solution of the problem.

Example 6. Consider the linear system of three equations

d(—2+¢
Yi—Y2—Yat+ys= ((1+e:r)4)
yl1+yl2*yl+2yszf(lliiea3

3V2+Y§,*Y1*y2:*71+(71+$ie3[ —o <t <o

with the conditions yi(t) = yoft) = y3(t) = 0 at t — o, where

g g
) = og, Yolt) = e’ ya(t) = Tep

F.

the exact

(38)

solutions are

(© 2016 BISKA Bilisim Technology
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In this example we havé,= 3, m=1, for N=4, we have the solution

A=[05-0500001250-0.12500
0.0625-0.03125-0.0625 0.03125 0]".

Therefore, we find the solution
y1(t) = 0.5Eg — 0.5E;

yo(t) = 0.125E, — 0.125E,
y3(t) = 0.0625E, — 0.03125; — 0.0625, + 0.0312%3

After simplifying we get the exact solution of the proble8&¥).

7 Conclusions

Systems of high-order linear differential equations areallg difficult to solve analytically especially with vabée
coefficients under mixed conditions. In many cases, obtgittie approximate solutions is necessary. For this retisen,
exponential Chebyshev collocation method can be propasebttin approximate solution of high-order linear systems
in infinite domain. The definition of the EC functions allow sslve systems of high-order differential equations in
unbounded domains. The systems and the subjected corsditiene transformed to matrix equation with unknown EC
coefficients. On the other hand, the EC functions approaelsd#rectly with infinite boundaries without divergence.
This variant for our method gave us freedom to deal with thetesyis of differential equations with boundary conditions
tends to infinity. lllustrative examples are used to demmansthe applicability of the proposed technique. Futurekwo
Recently, our research group examine a new operationaixraftderivatives of EC functions for solving ODEs in
unbounded domains [23] that may be applied for systems. ditiad, we introduced a form of exponential Chebyshev
for the second kind (reported on line [24], [25]) for ordipand partial differential equations that also can solveéesys
which is still under revision but some modifications are iezpl
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