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Abstract: In this work, we consider a number of boundary-value problems for time-fractional heat equation with the recently
introduced Caputo-Fabrizio derivative. Using the method of separation of variables, we prove a unique solvability of the stated
problems. Moreover, we have found an explicit solution to certain initial value problem for Caputo-Fabrizio fractional order
differential equation by reducing the problem to a Volterraintegral equation. Different forms of solution were presented depending on
the values of the parameter appeared in the problem.
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1 Introduction and Preliminary

1.1 Definitions and related works

Recently, Caputo and Fabrizio introduced a new fractional derivative [1]

CFDα
at f (t) =

1
1−α

t∫

a

f ′(s)e−
α

1−α (t−s)ds, (1)

where the order of the derivative 0< α < 1. In their next work [2], they defined a domain, on which operator (1) is well
defined by the set

Wα ,1(a,∞) =
{

f (t) ∈ L1(a,∞); ( f (t)− fa(s))e−
α

1−α (t−s) ∈ L1(a, t)×L1(a,∞)
}
,

whose norm is given forα 6= 1 by

|| f (t)||Wα,1 =

∞∫

a

| f (t)|dt+
α

1−α

∞∫

a

t∫

−∞

| fa(s)|e
− α

1−α (t−s)dsdt,

where fa denotes the extension of the functionf (t) and given by

fa(t) = f (t), t ≥ a, fa(t) = 0, −∞ < t < a.

According to the Theorem 1 of [1], derivative of order(n+α) (n≥ 1) is defined as follows

CFD(n+α)
at f (t) =CF Dα

at (CFDn
at f (t)) .
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The interest of this new fractional derivative is justified by Caputo and Fabrizio [1] due to the necessity of using of a
model describing the behavior of classical viscoelastic materials, thermal media, electromagnetic systems, etc.

In [3], Nieto and Losado studied the equation

CFDα
0t f (t) = u(t)

and based on its solution, they have introduced an integral operator corresponding to the differential operator (1) as

CFIα
0t f (t) = (1−α)u(t)+α

t∫

0

u(s)ds, t ≥ 0.

In their work, they have also considered the following initial value problem

CFDα
0t f (t) = λ f (t)+u(t), t ≥ 0,

f (0) = f0 ∈ R.

This problem has been reduced to a first order ODE and they haveproved that the problem has a unique solution for any
λ ∈ R.

In this work, we present explicit forms of the solution to thesame problem, imposing the required conditions to the given
data, by reducing it to the second kind Volterra integral equation.

Another application of this new derivative was considered by Atangana [4], where he studied using nonlinear Fisher’s
reaction-diffusion equation by using Sumudu transform.

We would like also to note that there is another new fractional order operator without singular kernel, which is an analog
of the Riemann-Liouville fractional derivative with singular kernel, was proposed by Yang et al [5] along with its
application to the steady heat flow process. More general operator was introduced by Atangana and Baleanu in [6] and its
application in Chaos was presented in [7].

In the next section, we will present our results regarding a unique solvability of certain initial value problem. The main
result of this work is presented in section 2, where four different boundary value problems were considered.

1.2 Solution of initial value problem

Here we will consider the initial value problem,

CFDα
0tu(t)−λu(t) = f (t), 0≤ t ≤ T, (2)

satisfying the initial condition
u(0) = 0, (3)

wheref (t) is a given function andλ , α ∈R such that 0< α ≤ 1.A unique solvability of this problem is formulated in the
following theorem.

Theorem 1.

(i) If λ 6= 1
1−α , f(t) ∈C(0,∞) and f(0) = 0, then problem (2)-(3) has a unique continuous solution, which is given by

u(t) =
1−α

1−λ (1−α)
f (t)+

α
[1−λ (1−α)]2

t∫

0

f (ξ )e
λα

1−λ(1−α)
(t−ξ )

dξ ; (4)
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(ii) If λ = 1
1−α , f(t) ∈ C1(0,∞) and f(0) = 0, f ′(0) = 0, then a unique continuous solution to problem (2)-(3) exists

and given by

u(t) =−(1−α) f (t)−
(1−α)2

α
f ′(t). (5)

Proof.Using the definition of Caputo-Fabrizio operator and integrating by parts, we deduce

(
1

1−α
−λ

)
u(t)−

α
(1−α)2

t∫

0

u(s)e−
α

1−α (t−s)ds= f (t). (6)

First, we consider the case ofλ 6= 1
1−α and hence, (6) yields

u(t)−

t∫

0

u(s)K(t,s)ds= f (t), (7)

where

K(t,s) =
α

(1−α) [1−λ (1−α)]
e−

α
1−α (t−s), f (t) =

1−α
1−λ (1−α)

f (t).

The second kind Volterra integral equation (7) can be solvedby the method of successive iterations as follows:

u1(t) = f (t)+

t∫

0

f (s)K(t,s)ds.

u2(t) = f (t)+

t∫

0

u1(s)K(t,s)ds= f (t)+

t∫

0

f (s)K(t,s)ds+

t∫

0

f (ξ )dξ
t∫

ξ

K(t,s)K(s,ξ )ds.

Setting

K2(t,ξ ) =
t∫

ξ

K(t,s)K(s,ξ )ds,

u2(t) can be rewritten as

u2(t) = f (t)+

t∫

0

f (ξ ) [K(t,ξ )+K2(t,ξ )]dξ .

One can then prove by mathematical induction that

un(t) = f (t)+

t∫

0

f (ξ )
n

∑
i=1

Ki(t,ξ )dξ ,

where

K1(t,ξ ) = K(t,ξ ), K j(t,ξ ) =
t∫

ξ

K(t,s)K j−1(s,ξ )ds, j = 2,3, ...
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Similarly, we can find general expression for kernelsK j(t,ξ ).

K2(t,ξ ) =
t∫

ξ

K(t,s)K1(s,ξ )ds

=

t∫

ξ

α
(1−α) [1−λ (1−α)]

e−
α

1−α (t−s)×
α

(1−α) [1−λ (1−α)]
e−

α
1−α (s−ξ )ds

=

(
α

(1−α) [1−λ (1−α)]

)2 t∫

ξ

e−
α

1−α (t−ξ )ds=

(
α

(1−α) [1−λ (1−α)]

)2

(t − ξ )e−
α

1−α (t−ξ ),

K3(t,ξ ) =
t∫

ξ

K(t,s)K2(s,ξ )ds

=

t∫

ξ

α
(1−α) [1−λ (1−α)]

e−
α

1−α (t−s)×

(
α

(1−α) [1−λ (1−α)]

)2

(s− ξ )e−
α

1−α (s−ξ )ds

=

(
α

(1−α) [1−λ (1−α)]

)3 (t − ξ )2

2
e−

α
1−α (t−ξ ),

= . . . . . .

Ki(t,ξ ) =
(

α
(1−α) [1−λ (1−α)]

)i (t − ξ )i−1

(i −1)!
e−

α
1−α (t−ξ ), i = 1,2, ...

Hence, resolvent-kernel will have the form

R(t,ξ ) =
∞

∑
i=1

Ki(t,ξ ) =
α

(1−α) [1−λ (1−α)]
e−

α
1−α (t−ξ )×

∞

∑
i=1

[
α

(1−α)[1−λ (1−α)](t − ξ )
]i−1

(i −1)!
,

which can be reduced to
R(t,ξ ) =

α
(1−α) [1−λ (1−α)]

e
λα

1−λ(1−α)
(t−ξ )

.

Thus, solution of (7) will be given by

u(t) = f (t)+
α

(1−α) [1−λ (1−α)]

t∫

0

f (ξ )e
λα

1−λ(1−α)
(t−ξ )

dξ ,

which on using the representation off (t) and the conditionf (0) = 0 leads to the solution representation (4) as desired.

Now, if λ = 1
1−α , equation (6) reduces to

t∫

0

u(s)e−
α

1−α (t−s)ds=
(1−α)2

α
f (t),
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which can be rewritten as the following second kind Volterraintegral equation

u(t)−

t∫

0

u(s)K(t,s)ds= f̂ (t), (8)

where

K(t,s) =
α

1−α
e−

α
1−α (t−s), f̂ (t) =

(1−α)2

α
f ′(t).

Following the same previous approach, we obtain an expression for the resolvent-kernel in the formR(t,s) = α
1−α and

hence, a solution of integral equation (8) will be given by

u(t) = f̂ (t)+
α

1−α

t∫

0

f̂ (s)ds,

which on using the representation off̂ and conditionsf (0) = 0, f ′(0) = 0, leads to the explicit form of the solution as in
(5). This ends the proof of Theorem 1.

Remark.The solution for the special caseλ = 0 follows from the caseλ 6= 1
1−α and is given by

u(t) = (1−α) f (t)+α
t∫

0

f (s)ds.

Remark.If equation (2) is subjected to a non-homogeneous initial condition u(0) = u0, then the conditionf (0) = 0 will
be replaced byf (0) =−λu0 and hence the solution will be given by

u(t) =−
(1−α)2

α
f ′(t)− (1−α)[ f (t)− f (0)]+u0 for λ =

1
1−α

and

u(t) =
1−α

1−λ (1−α)
f (t)+

α
[1−λ (1−α)]2

t∫

0

f (ξ )e
λα

1−λ(1−α)
(t−ξ )

dξ +
u0

1−λ (1−α)
e

λα
1−λ(1−α)

t
, for λ 6=

1
1−α

.

2 Main result

In this section we will consider Caputo-Fabrizio fractional heat equation subjected to four different boundary conditions
associated with self-adjoint and non self-adjoint spectral problems.

2.1 Boundary value problems associated with self-adjoint spectral problems

Consider a rectangular domainΩ = {(x, t) : 0< x< 1, 0< t < T}. In this domain we investigate the following three
problems:

Problem 1. Find a regular solution of the equation

CFDα
0tu(x, t)−uxx(x, t) = g(x, t), (9)
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in a domainΩ , which satisfies initial condition

u(x,0) = 0, 0≤ x≤ 1 (10)

and boundary conditions
u(0, t) = 0, u(1, t) = 0, 0≤ t ≤ T, (11)

whereg(x, t) is a given function.

Problem 2. Find a regular solution of problem (9)-(10) in the domainΩ , which satisfies boundary conditions

u′(0, t) = 0, u′(1, t) = 0, 0< t < T. (12)

Problem 3. Find a regular solution of problem (9)-(10) inΩ , which satisfies non-local boundary conditions

u(0, t) = u(1, t), 0≤ t ≤ T; u′(0, t) = u′(1, t), 0< t < T. (13)

We will first consider Problem 1. Using the method of separation variables leads to the following self-adjoint spectral
problem

X′′(x)+ µX(x) = 0, X(0) = X(1) = 0

in the variablex. This problem has eigenvaluesµk = −(kπ)2, k = 1,2, ... and the corresponding eigenfunctions are
Xk(x) = sinkπx.

Since the system of functions{sinkπx} is complete and forms a basis inL2, we look for a solution to Problem 1 of the
form

u(x, t) =
∞

∑
k=1

uk(t)sinkπx, (14)

where

uk(t) =

1∫

0

u(x, t)sinkπxdx. (15)

Substituting (14) into (9) and (10), we get

CFDα
0tuk(t)+ (kπ)2uk(t) = gk(t), uk(0) = 0 (16)

where

gk(t) =

1∫

0

g(x, t)sinkπxdx. (17)

According to Theorem 1, solution of problem (16) is given by

uk(t) =
(1−α)gk(t)

1+(kπ)2(1−α)
+

α
[1+(kπ)2(1−α)]2

t∫

0

gk(ξ )e
−

α(kπ)2(t−ξ )
1+(kπ)2(1−α) dξ (18)

with gk(t) ∈ C[0,T], gk(0) = 0, which can be achieved by assumingg(x, t) ∈ C[0,T] and g(x,0) = 0. This imposed
conditions will in turn, lead to the convergence of the series solution given by (14).
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Series representation ofuxx(x, t) is given by

uxx(x, t) =−
∞

∑
k=1

(kπ)2 1−α
1+(kπ)2(1−α)

gk(t)sinkπx−
∞

∑
k=1

(kπ)2


 α
[1+(kπ)2(1−α)]2

t∫

0

gk(ξ )e
−

α(kπ)2(t−ξ )
1+(kπ)2(1−α) dξ


sinkπx

=
∞

∑
k=1

gk(t)sinkπx+
∞

∑
k=1

sinkπx
1+(kπ)2(1−α)

t∫

0

g′k(ξ )e
−

α(kπ)2(t−ξ )
1+(kπ)2(1−α) dξ .

The convergence of the second series in the expression ofuxx(x, t) is guaranteed by assuminggt(x, t) ∈ L1[0,T]. Hence,
in order to prove the convergence of series expansion ofuxx(x, t) it remains to show the convergence of the first series in
the expression ofuxx(x, t). To do so, we consider the following estimate of this series:

∞

∑
k=1

|

1∫

0

g(x, t)sinkπxdx|=
∞

∑
k=1

|
1

kπ

(
g(1, t)(−1)k−g(0, t)

)
+

1
kπ

1∫

0

∂g(x, t)
∂x

sinkπxdx|,

which on assumingg(0, t) = g(1, t) = 0 and using the inequalityab≤ 1/2(a2+b2) becomes

∞

∑
k=1

∣∣∣∣∣∣

1∫

0

g(x, t)sinkπxdx

∣∣∣∣∣∣
≤

∞

∑
k=1

1
2

(
1

(kπ)2 + |gk(t)|
2
)
,

where

gk(t) =

1∫

0

∂g(x, t)
∂x

sinkπxdx.

The convergence of the latter series is obtained by assuming∂g(x,t)
∂x ∈ L2[0,1] and using

∞
∑

k=1
gk(t) ≤ ‖gk(t)‖L2. Hence,

series representation foruxx(x, t) converges. The convergence of series expansion forCDα
0tu(x, t) follows from equation

(9).

This result can be formulated in the following theorem.

Theorem 2. If the following conditions

g(x, t) ∈C
(
Ω
)
, g(x,0) = 0, g(0, t) = g(1, t) = 0, gt(x, t) ∈ L1[0,T], gx(x, t) ∈ L2[0,1],

hold, then Problem 1 has a unique solution represented by

u(x, t) =
∞

∑
k=1




(1−α)gk(t)
1+(kπ)2(1−α)

+

α
t∫

0
gk(ξ )e

−
α(kπ)2(t−ξ )

1+(kπ)2(1−α) dξ

[1+(kπ)2(1−α)]2


sinkπx. (19)

Note that a uniqueness of the solution for Problem 1 will follow from the representation (15), based on (18) and
completeness of the system{sinkπx}.

Since the boundary conditions in Problems 2 and 3 will resultin self-adjoint spectral problems, then Problems 2 and 3
could be studied in a similar way. The results can be formulated in the following theorems.
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Theorem 3. If the following conditions

g(x, t) ∈C(Ω ), gt(x, t) ∈ L1[0,T], gx(x, t) ∈ L2[0,1]

hold, then a unique solution of Problems 2, represented by

u(x, t) =
∞

∑
n=0




(1−α)gn(t)
1+(nπ)2(1−α)

+

α
t∫

0
gn(ξ )e

−
α(nπ)2(t−ξ )

1+(nπ)2(1−α) dξ

[1+(nπ)2(1−α)]2


cosnπx

exists, where

gn(t) =

1∫

0

g(x, t)cosnπxdx, n= 0,1,2, ...

Theorem 4. If the following conditions

g(x, t) ∈C(Ω), g(0, t) = g(1, t), gt(x, t) ∈ L1[0,T], gx(x, t) ∈ L2[0,1]

hold.

A unique solution of Problems 3, represented by

u(x, t) =
∞

∑
n=0




(1−α)gn1(t)
1+(nπ)2(1−α)

+

α
t∫

0
gn1(ξ )e

−
α(nπ)2(t−ξ )

1+(nπ)2(1−α) dξ

[1+(nπ)2(1−α)]
2


cos2nπx

+
∞

∑
n=1




(1−α)gn2(t)
1+(nπ)2(1−α)

+

α
t∫

0
gn2(ξ )e

−
α(nπ)2(t−ξ )

1+(nπ)2(1−α) dξ

[1+(nπ)2(1−α)]2


sin2nπx

exists, where

gn1(t) =

1∫

0

g(x, t)cos2nπxdx, n= 0,1,2, ...,

gn2(t) =

1∫

0

g(x, t)sin2nπxdx, n= 1,2, ...

2.2 Boundary value problem associated with nonself-adjoint spectral problem

In this section, we consider the following problem with non-local boundary conditions:

Problem 4. Find a regular solution to problem (9)-(10) inΩ , which satisfies the non-local boundary conditions

u(0, t) = u(1, t), 0≤ t ≤ T, ux(0, t) = 0, 0< t < T. (20)

The associated spectral problem for this case is given by

X′′ (x)+ µX (x) = 0, X (0) = X (1) , X′ (0) = 0, (21)
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which is not self-adjoint. The eigenvalues of (21) areµk = λ 2
k , λk = 2kπ (k = 0,1,2, ...) and the corresponding

eigenfunctions are 1, cosλkx, supplemented by the associate functionxsinλkx, which form a complete system of root
functions denoted by

Xk (x) = {1, cosλkx, xsinλkx} , k= 1,2, .... (22)

Since, problem (21) is not self-adjoint and henceXk does not form a basis, we need to find root functions of the
corresponding adjoint problem:

Y′′ (x)+ µY(x) = 0, Y′ (0) =Y′ (1) , Y(1) = 0.

This problem has the following system of root functions:

Yk (x) = {2(1− x),4(1− x) cosλkx, 4sinλkx} k= 1,2, .... (23)

Now systems (22) and (23) form bi-orthogonal system, which satisfies the necessary and sufficient condition for the basis
property in the spaceL2[0,1] (see [8]). Thus, we seek a solution of Problem 4 in the form

u(x, t) = u0(t)+
∞

∑
k=1

u1k(t)cos2kπx+
∞

∑
k=1

u2k(t)xsin2kπx, 0≤ t ≤ T. (24)

The given functiong(x, t) can be also represented in the following series expansion

g(x, t) = g0(t)+
∞

∑
k=1

g1k(t)cos2kπx+
∞

∑
k=1

g2k(t)xsin2kπx, 0≤ t ≤ T, (25)

where the coefficients of the two series above are defined as follows

u0(t) = 2
1∫
0

u(x, t)(1− x)dx,

u1k(t) = 4
1∫
0

u(x, t)(1− x)cos2kπxdx,

u2k(t) = 4
1∫
0

u(x, t)sin2kπxdx,

g0(t) = 2
1∫
0

g(x, t)(1− x)dx,

g1k(t) = 4
1∫
0

g(x, t)(1− x)cos2kπxdx,

g2k(t) = 4
1∫
0

g(x, t)sin2kπxdx.

(26)

The unknown coefficientsu0(t), u1k(t), u2k(t) can be determined by substituting (23)-(24) into (9) and (10), as solution of
the following fractional order initial value problems:

CFDα
0tu0 (t) = g0(t), u0(0) = 0, (27)

CFDα
0tu1k(t)+ (2kπ)2u1k (t) = g1k(t)+4kπu2k(t) , u1k(0) = 0, (28)

CFDα
0tu2k (t)+ (2kπ)2u2k (t) = g2k(t), u2k(0) = 0. (29)
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Based on Theorem 1, solutions of (27) and (29) are given, respectively, by

u0(t) = (1−α)g0(t)+α
t∫

0

g0(z)dz, (30)

u2k(t) =
1−α

1+(2kπ)2(1−α)
g2k(t)+

α
[1+(2kπ)2(1−α)]2

t∫

0

g2k(ξ )e
−

α(2kπ)2(t−ξ )
1+(2kπ)2(1−α) dξ . (31)

Similarly, on using the expression (31), solution of (28) can be written as

u1k(t) =
1−α

1+(2kπ)2(1−α)

[
g1k(t)+

4kπ(1−α)

1+(2kπ)2(1−α)
g2k(t)

]
+

α
[1+(2kπ)2(1−α)]

2

t∫

0

e
−

α(2kπ)2(t−z)
1+(2kπ)2(1−α) (32)

×

[
g1k(z)+

8kπ(1−α)

1+(2kπ)2(1−α)
g2k(z)+

4kπα
[1+(2kπ)2(1−α)]

2 g2k(z)(t − z)

]
dz.

This completes the existence of formal solution to Problem 4as given by (24).

It is now left to check the convergence of the series appearedin u(x, t), uxx(x, t) andCDα
0tu(x, t). Here we present the

convergence of series representation ofuxx(x, t) and the rest can be treated similarly. Using the representation of u(x, t) as
given in (24) together with (30)-(32), we obtain the following expression foruxx(x, t):

uxx(x, t) =−
∞

∑
k=1

(2kπ)2(1−α)cos2kπx
1+(2kπ)2(1−α)

g1k(t)−
∞

∑
k=1

2(2kπ)2(1−α)cos2kπx

[1+(2kπ)2(1−α)]2
g2k(t)

+
∞

∑
k=1

(2kπ)2(1−α)cos2kπx

[1+(2kπ)2(1−α)]2

t∫

0

g1k(z)e
−

α(2kπ)2(t−z)
1+(2kπ)2(1−α) dz+

∞

∑
k=1

4(2kπ)2α(1−α)cos2kπx

[1+(2kπ)2(1−α)]3

t∫

0

g2k(z)e
−

α(2kπ)2(t−z)
1+(2kπ)2(1−α) dz

+
∞

∑
k=1

2(2kπ)3α2cos2kπx

[1+(2kπ)2(1−α)]
4

t∫

0

g2k(z)(1− z)e
−

α(2kπ)2(t−z)
1+(2kπ)2(1−α) dz+

∞

∑
k=1

(2kπ)2(1−α)xsin2kπx
1+(2kπ)2(1−α)

g2k(t)

+
∞

∑
k=1

(2kπ)2αxsin2kπx

[1+(2kπ)2(1−α)]2

t∫

0

g2k(z)e
−

α(2kπ)2(t−z)
1+(2kπ)2(1−α) dz. (33)

On integration by parts, using inequalitiesab≤ 1/2(a2+b2),
∞
∑

k=1
fk(t)≤‖ fk(t)‖L2, and imposing the following conditions

g(x, t) ∈C(Ω), g(x,0) = 0, g(0, t) = g(1, t), gt(x, t) ∈ L1[0,T], gx(x, t) ∈ L2[0,1],

we get the estimate foruxx(x, t) as:

|uxx(x, t)| ≤
∞

∑
k=1

C3

(kπ)2 +(‖ḡ1k(t)‖L2 + ‖g2k(t)‖L2 + ‖ḡ2k(t)‖L2) ,

c© 2016 BISKA Bilisim Technology



NTMSCI 4, No. 4, 79-89 (2016) /www.ntmsci.com 89

whereC3 is a positive constant and

ḡ1k(t) =
1∫
0
[gx(x, t)(1− x)−g(x, t)]sin2kπxdx,

ḡ2k(t) =
1∫
0

gx(x, t)cos2kπxdx,

This estimate will ensure the convergence of series representation ofuxx(x, t). Uniqueness follows from the representation
of solution and the completeness of the used bi-orthogonal system. Now, we can formulate our result as the following

Theorem 5. If g(x, t) ∈ C(Ω), g(x,0) = 0, g(0, t) = g(1, t), gt(x, t) ∈ L1[0,T], gx(x, t) ∈ L2[0,1], then Problem 4 has a
unique solution, represented by

u(x, t) = (1−α)g0(t)+α
t∫

0

g0(z)dz+
∞

∑
k=1

(
1−α

1+(2kπ)2(1−α)

[
g1k(t)+

4kπ(1−α)

1+(2kπ)2(1−α)
g2k(t)

]

+
α

[1+(2kπ)2(1−α)]
2

t∫

0

e
−

α(2kπ)2(t−z)
1+(2kπ)2(1−α)

[
g1k(z)+

8kπ(1−α)

1+(2kπ)2(1−α)
g2k(z)

+
4kπα

[1+(2kπ)2(1−α)]2
g2k(z)(t − z)

]
dz

)
cos2kπx+

∞

∑
k=1

(
1−α

1+(2kπ)2(1−α)
g2k(t)

+
α

[1+(2kπ)2(1−α)]
2

t∫

0

g2k(ξ )e
−

α(2kπ)2(t−ξ )
1+(2kπ)2(1−α) dξ


xsin2kπx.
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