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Abstract: The fractional calculus that is one of the new trends in science and engineering is concept of derivative and integral with
arbitrary order. And, discrete fractional calculus (DFC) has an important place in fractional calculus which studied for the last 300 years.
In present paper, we solved the equations of motion in mass-spring-damper system by using nabla (∇) discrete fractional operator. And,
we also introduced some instructive examples.
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1 Introduction

Derivative and integral operators are important subjects in ordinary calculus. Similarly, sum and difference operators are
also important subjects in discrete calculus. These operators can be applied to a function up to then-th order wheren is
an integer. However, in the fractional calculus, derivative or integral operators have arbitrary orders. It is well known that
there is a similarity between differential calculus and discrete calculus. Analogously, there is a similarity between
operators of fractional calculus and DFC.

In recent years, many scientific works have been performed with regard to fractional calculus and DFC [1,2,3,4,5,6,7].
Furthermore, Atici and Uyanik [8] studied two new monotonicity concepts for a nonnegative ornonpositive valued
function defined on a discrete domain, and gave examples to illustrate connections between these new monotonicity
concepts and the traditional ones. Peterson et al. [9] proved the some important results for nabla and delta fractional
difference. Mozyrska and Wyrwas [10] mentioned the Caputo-, Riemann-Liouville-, and Grünwald-Letnikov-type
difference initial value problems for linear fractional-order systems, and introduced the formula for the image of the
discrete Mittag-Leffler matrix function in the L-transform, and also proved forms of images in the L-transform of the
expressed fractional difference summation and operators.Wu and Baleanu [11] studied on the analytical aspects, and the
variational iteration method is extended in a new way to solve an initial value problem. Ortigueira et al. [12] presented a
derivative based discrete-time signal processing, and studied both nabla and delta derivatives, and also generalised
including the fractional case. Jonnalagadda [13] discussed the dependence of solutions of nabla fractionaldifference
equations on the initial conditions and then obtained a fractional variation of constants formula for nabla fractional
difference equations involving Caputo type fractional differences. Zhou et al. [14] studied on the initial value problem to
a nonlinear fractional difference equation with the Caputolike difference operator, and also obtained global and local
existence results of solutions by means of some fixed point theorems. Abdeljawad and Baleanu [15] defined the right
fractional sum and difference in the delta time scale calculus, and introduced a formula for the integration by parts, and
then obtain a discrete Euler-Lagrange equation in fractional calculus by using this formula. An almost free damping
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vibration equation was discussed by means of N-fractional calculus [16]. The Adomian decomposition method was
applied on a fractionally damped mechanical oscillator fora sine excitation, and the analytical solution of the problem
was found [17]. The solution of the fractional vibration equation, wherethe damping term is characterized by means of
the Caputo fractional derivative was investigated [18].

The differential operators and singular differential equations that are the extensive research interests of the applied
mathematics provide positive contributions for the development of the academic studies for many years [19,20,21]. In
this direction, we investigated the equations of free vibration motion that can be transformed to the singular differential
equations. And, we obtained the explicit solutions of theseequations by applying nabla discrete fractional operator.So,
we developed a different solution method for the ordinary differential equations (ODEs).

2 Preliminaries

In this section, we present some properties of fractional calculus and DFC.

Definition 1. There are different definitions of differentiation and integration in fractional calculus. One of these
definitions is Riemann-Liouville definition. Fractional differentiation and fractional integration of this definition are
given by, respectively[22],

aDν
t f (t) = [ f (t)]ν =

1
Γ (n−ν)

dn

dtn

∫ t

a

f (ξ )
(t − ξ )ν+1−ndξ (n−1≤ ν < n,n∈ N). (1)

and,

aD−ν
t f (t) = [ f (t)]−ν =

1
Γ (ν)

∫ t

a

f (ξ )
(t − ξ )1−ν dξ (t > a,ν > 0), (2)

Definition 2. Let
tn = t(t +1)(t+2)...(t +n−1) (n∈N, t0 = 1), (3)

where tn is the rising factorial power[23], or the ascending factorial[24]. Consider t∈ R\{...,−2,−1,0} and ν ∈ R.
Then “t to theν rising” is defined by

tν =
Γ (t +ν)

Γ (t)
(0ν = 0). (4)

Then, we write equality as
∇(tν ) = νtν−1, (5)

where∇ f (t) = f (t)− f (t −1) [5].

Definition 3. Let a∈R andν ∈R
+ such that0< n−1≤ ν < n (n∈ Z

+). Theν-th order fractional sum of f is given by

∇−ν
a f (t) =

t

∑
ξ=a

[t −h(ξ )]ν−1

Γ (ν)
f (ξ ), (6)

where t∈ Na = {a,a+1,a+ 2, ...},h(t) = t −1 is backward jump operator of the time scale calculus. Theν-th order
fractional difference of f is given by

∇ν
a f (t) = ∇n∇−(n−ν)

a f (t) = ∇n
t

∑
ξ=a

[t −h(ξ )]n−ν−1

Γ (n−ν)
f (ξ ), (7)

where f : Na → R [6].
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Definition 4. E shift operator is defined by
E

n f (t) = f (t +n), (8)

where n∈N [25].

Theorem 1.Let ν,υ ,> 0 and k, l are scalars. So,

∇−ν∇−υ f (t) = ∇−(ν+υ) f (t) = ∇−υ ∇−ν f (t),

∇ν [k f(t)+ lg(t)] = k∇ν f (t)+ l∇νg(t),

∇∇−ν f (t) = ∇−(ν−1) f (t),

∇−ν∇ f (t) = ∇1−ν f (t)−
(

t +ν −2
t −1

)

f (0),

where f,g : N0 → R [7].

Lemma 1. (Power Rule)

∇−ν
a (t −a+1)υ =

Γ (υ +1)
Γ (ν +υ +1)

(t −a+1)ν+υ (∀t ∈ Na), (9)

whereν,υ ∈ R (ν > 0) [6].

Lemma 2.The following equality is hold

∇−ν
a+1∇ f (t) = ∇∇−ν

a f (t)− (t −a+1)ν−1

Γ (ν)
f (a) (ν > 0). (10)

where f is defined onNa [6].

Lemma 3. (Leibniz Rule) Theν-th order fractional difference of the product f g is

∇ν
0( f g)(t) =

t

∑
n=0

(

ν
n

)

[∇ν−n
0 f (t −n)][∇ng(t)], (ν > 0, t ∈ Z

+), (11)

where f(t) and g(t) are defined onN0 [26].

Lemma 4.The following equality is hold

[ fν (t)]υ = fν+υ(t) = [ fυ(t)]ν (ν,υ ∈ R, fν (t) 6= 0, fυ(t) 6= 0), (12)

where f(t) is analytic and single-valued function[7].

3 Main results

In a mass-spring system, free vibration motion of a mass is indicated by an ordinary homogeneous differential equation
with arbitrary constants as follows,

m
d2x(t)

dt2
+ kx(t) = 0, (13)

wherex is amount of extension,t is time,m is mass andk is spring constant.
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Fig. 1: Mass-spring system.

In Eq. (13), we suppose thatµ =
√

k/m (µ is vibration frequency), and so, we have

d2x(t)
dt2

+ µ2x(t) = 0. (14)

This last equation can be solved simply by the help of characteristic equation. Although, usage of the nabla discrete
fractional operator is not easy for Eq. (14), we want to prove existence of a different method. Firstly,we need to
transform Eq. (14) to a singular differential equation due to apply the nabla operator.

Let x= t2+αϕ (t 6= 0,ϕ = ϕ(t)). So, we write

tϕ2+2(α +2)ϕ1+[µ2t +(α2+3α +2)t−1]ϕ = 0, (15)

whereϕn = dnϕ/dtn (n= 0,1,2, ...).

For α2 + 3α + 2 = 0, we obtain α = −2,−1. In case of α = −2, we have Eq. (14). Let α = −1 and
ϕ = eβ tψ (t 6= 0,ψ = ψ(t)). Then,

tψ2+2(β t+1)ψ1+[(β 2+ µ2)t +2β ]ψ = 0. (16)

If we choose thatβ 2+ µ2 = 0 in Eq. (16), then, we haveβ =±iµ , and so,

tψ2+2(1± iµt)ψ1±2iµψ = 0. (17)

By applying∇-discrete fractional operator to the both sides of (17), we have

∇ν(tψ2) = tψ2+ν +νEψ1+ν , ∇ν (tψ1) = tψ1+ν +νEψν ,

and,
tψ2+ν +[νE+2(1± iµt)]ψ1+ν ±2iµ(νE+1)ψν = 0, (18)

whereE is the shift operator. Here, ifνE+ 1= 0, ν = −E
−1 = −1, and so, we obtain first-order homogeneous linear

ordinary differential equations as

ψ1+(t−1+2iµ)ψ = 0, ψ1+(t−1−2iµ)ψ = 0. (19)

Solutions of Eq. (19) are, respectively,

ψ I = At−1e−2iµt , ψ II = Bt−1e2iµt , (20)

whereA,B are arbitrary constants and, general solution of the systemis

x(t) =Ccosµt +Dsinµt (C= A+B,D = B−A). (21)
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Definition 5. For Eq. (14), we get initial conditions as

x(0) = x0, x1(0) = v0, (22)

where v0 is velocity. By using (22) for (21), we have equalities

C= x0, D =
v0

µ
. (23)

Finally, we obtain the solution in periodic functions as follows

x(t) = x0cosµt +
v0

µ
sinµt, (24)

where the motion is reciprocating action. This motion is known as simple harmonic motion.

Now, we suppose that x(t) = Esin(µt +θ ) in Eq. (24), that is,

x(t) = Esinµt cosθ +Esinθ cosµt. (25)

Then, we write
Ecosθ =

v0

µ
, Esinθ = x0, (26)

and,

tanθ =
µx0

v0
, E =

√

(v0

µ

)2
+(x0)2, (27)

whereθ is phase angle and E is vibration amplitude. Here, elapsed time for a reciprocating action is T= 2π/µ =

2π
√

m/k.

Example 1.Let m= 5 kg andk= 125 N/m. If system is pulledx0 = 0.4 m and released withv0 = 0.2 m/sspeed;

µ = 5 rad/s, T ∼= 1.25 s, x(t) = (0.4)cos5t +(0.04)sin5t.

Fig. 2: The graphic of mass-spring system.
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The equation of motion in an antifriction system that is consisted by connecting a damper to previous system is

x2t +ax1t +bx(t) = 0, (28)

wherea= c/m, b= k/mandc is damping coefficient. This equation states a mass-spring-damper system.

Fig. 3: Mass-spring-damper system.

By substitutingx= t2+γϕ (t 6= 0,ϕ = ϕ(t)), we obtain

tϕ2+[at+2(2+ γ)]ϕ1+[bt+a(2+ γ)+ (γ2+3γ +2)t−1]ϕ = 0. (29)

Here, if we suppose thatγ =−1 andϕ = eδ tψ (t 6= 0,ψ = ψ(t)) alike previous solution, we have

tψ2+[(a+2δ )t+2]ψ1+[(δ 2+aδ +b)t+a+2δ ]ψ = 0. (30)

For δ 2+aδ +b= 0, δ = ε ± τ, whereε =−a/2 andτ =
√

a2−4b/2 and,

tψ2+(ηt +2)ψ1+ηψ = 0, (31)

whereη = a+2δ .

By applying∇-discrete fractional operator to the both sides of (31), we have

tψ2+ν +(νE+ηt+2)ψ1+ν +η(νE+1)ψν = 0. (32)

Here, forν =−E
−1 =−1,

ψ1+(t−1+η)ψ = 0, (33)

and, solution isψ = At−1e−ηt whereA is arbitrary constant. Finally, we obtainx(t) = Ae−( a+η
2 )t . Here, three cases are

possible,

(i) a2 > 4b (Overdamped response). The motion will finish in a short time and, solution is

x(t) = Be−( a−
√

a2−4b
4 )+Ce−( a+

√
a2+4b
4 ) whereB,C are arbitrary constants.

(ii) a2 = 4b (Criticaldamped response). This is not a vibration motion and, solution isx(t) = (B+Ct)e−
at
4 .

(iii) a2 < 4b (Underdamped response). Here, damped natural frequencyµn is defined byµ
√

1−σ2, whereσ = c/2
√

km
is damping ratio and,µ =

√

k/m. And so,
√

a2−4b/4= iµn and,

x(t) = e−
at
4 (Bcosµnt +Csinµnt). (34)
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Let x(t) = De−
at
4 cos(µnt −ρ) in Eq. (34), that is,

x(t) = e−
at
4 (Dcosµnt cosρ +Dsinµnt sinρ). (35)

Then, we have

B2+C2 = D2, tanρ =
C
B
, (36)

wheree−
at
4 is damping factor and, the motion is a vibration motion.

Example 2.Let m= 5 kg, c= 40 kg/s andk = 100 N/m in a mass-spring-damper system. And, initial conditions are
x(0) = 0, x1(0) = 0.4 m/s. Then, we obtain

a= 8, σ ∼= 0.89< 1, µ ∼= 4.47 s−1, µn
∼= 2.01 s−1

and,
x(t) = e−2t [Bcos(2.01)t+Csin(2.01)t].

Under the initial conditions, the solution is

x(t) = (0.4)e−2t sin(2.01)t.

Fig. 4: The graphic of mass-spring-damper system.

4 Conclusion

We investigated the equations of free vibration motion in a mass-spring system and mass-spring-damper system. And, we
obtained the solutions by the help of the nabla discrete fractional operator. After, this paper was enriched by means of
some examples. And, we will apply this method to the another singular equations in the future time.
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