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Abstract: In this paper, we study Mannheim surface offsets in dual space. By the aid of the E. Study Mapping, we consider ruled
surfaces as dual unit spherical curves and define the Mannheim offsets of ruled surfaces by means of dual geodesic trihedron (dual
Darboux frame). We obtain the relationships between the invariants of Mannheim ruled surfaces. Furthermore, we give the conditions
for these surface offsets to be developable.
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1 Introduction

Generally, an offset surface is offset a specified distance from the original along the parent surface’s normal. Offsetting
of curves and surfaces is one of the most important geometric operations in CAD/CAM due to its immediate applications
in geometric modeling, NC machining, and robot navigation [4]. Especially, the offsets of ruled surfaces, which are the
surfaces generated by continuously moving of a straight line, have an important role in (CAGD) [11,12]. These surfaces
are used in different kinds of applications of Computer Aided Geometric Design (CAGD), moving geometry and
kinematics. In [13], Ravani and Ku defined and studied the well-known offsets of ruled surfaces called Bertrand
trajectory ruled surfaces. Then, Küçük and Gürsoy have introduced closed Bertrand trajectory ruled surfaces in dual
space in terms of their integral invariants [6]. They have obtained the relations between the pitches and angle of pitches
of closed Bertrand trajectory ruled surfaces. Also, they have given some characterizations including the relationships
between the area of projections of spherical images and integral invariants of Bertrand trajectory ruled surfaces.

Recently, a new offset of ruled surfaces has been defined by Orbay, Kasap and Aydemir [7]. They have called this new
offset as Mannheim offset and studied the developable Mannheim offset surfaces. Later, Önder and Uǧurlu have defined
and studied Mannheim offsets of ruled surfaces in the Minkowski 3-space E3

1 [8,9]. Furthermore, Mannheim offsets of
closed ruled surfaces in dual space have been studied according to Blaschke frame in [10] and the characterizations of
Mannheim offsets of ruled surfaces in terms of integral invariants and areas of projection have been given.

In this paper, by considering E. Study mapping, we define the Mannheim offsets of the ruled surfaces according to dual
geodesic trihedron and we give some theorems and new results for Mannheim offsets of ruled surfaces.
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2 Dual representation of ruled surfaces

W.K. Clifford (1845-1879) had been introduced dual numbers such as a dual number is a double in the form
ā = (a,a∗) = a+ εa∗ where a and a∗ are real numbers and ε = (0,1) is called dual unit with the property that ε2 = 0 [1].
Let ā = (a,a∗) = a+ εa∗ and b̄ = (b,b∗) = b+ εb∗ be two dual numbers. The product of these numbers is defined by

āb̄ = (a,a∗)(b,b∗) = (ab,ab∗+a∗b) = ab+ ε(ab∗+a∗b). (1)

Then, the set of dual numbers is denoted by D,

D =
{

ā = a+ εa∗ : a,a∗ ∈ R, ε2 = 0
}
. (2)

Dual differentiable function of a dual variable has been studied by Dimentberg [2]. He derived the following general
expression for a dual (differentiable) function

f (x̄) = f (x+ εx∗) = f (x)+ εx∗ f ′(x), (3)

where f ′(x) shows the derivative of f (x) with respect to x. From this definition, we can give the following dual expressions
for some well-known functions, 

cos(x̄) = cos(x+ εx∗) = cos(x)− εx∗ sin(x),
sin(x̄) = sin(x+ εx∗) = sin(x)+ εx∗ cos(x),√

x̄ =
√

x+ εx∗ =
√

x+ ε x∗
2
√

x , (x > 0).
(4)

Let consider the set D3 = D×D×D of triples of dual numbers. Then we write

D3 = {ã = (ā1, ā2, ā3) : āi ∈ D, i = 1,2,3} . (5)

which is called dual space and the triples ã = (ā1, ā2, ā3) are called dual vectors. Similar to the dual numbers, a dual vector
ã has the form ã = a+ εa∗ = (a,a∗), where a and a∗ are the vectors of R3. Then scalar product and cross product of dual
vectors ã = a+ εa∗ and b̃ = b+ εb∗ in D3 have given by,

⟨
ã, b̃
⟩
= ⟨a,b⟩+ ε (⟨a,b∗⟩+ ⟨a∗,b⟩) , (6)

and

ã× b̃ = a×b+ ε (a×b∗+a∗×b) , (7)

respectively, where ⟨a,b⟩ and a×b are scalar product and cross product of the vectors a and b in R3, respectively.

The norm of a dual vector ã is given by

∥ã∥=
√
⟨ã, ã⟩= ∥a∥+ ε

⟨a,a∗⟩
∥a∥

. (8)

Then if ã has the norm 1+ ε0, it is called dual unit vector and the set of dual unit vectors is called dual unit sphere and
defined by

S̃2 =
{

ã = (ā1, ā2, ā3) ∈ D3 : ⟨ã, ã⟩= 1+ ε0
}
, (9)

c⃝ 2015 BISKA Bilisim Technology



NTMSCI 3, No. 3, 35-45 (2015) / www.ntmsci.com 37

(See [1,3]).

In 3-dimensional space R3, it is enough to have a point p ∈ L and a unit vector a to determine an oriented line L. Then,
the vector a∗ = p×a is called moment vector which does not depend on the points p. Then the pair (a,a∗) represents the
oriented line L. Conversely, if a pair (a,a∗) is given, the line L can be obtained as
L =

{
(a×a∗)+λa : a,a∗ ∈ R3, λ ∈ R

}
. From the above discussion, we have that

⟨a, a⟩= 1, ⟨a, a∗⟩= 0. (10)

The components ai, a∗i (1 ≤ i ≤ 3) of the vectors a and a∗ are called the normalized Plucker coordinates of the line L.
From (6), (9) and (10), we see that the dual unit vector ã = a+ εa∗ corresponds to the line L and this correspondence is
called E. Study Mapping [1,3]. This correspondence has an important role to derive the properties of spatial motion of a
line and consequently differential geometry of ruled surfaces. Hence, we study the geometry of ruled surfaces by
considering dual curves lying fully on S̃2.

The angle θ̄ = θ + εθ ∗ between two dual unit vectors ã, b̃ is called dual angle and defined by

⟨
ã, b̃
⟩
= cos θ̄ = cosθ − εθ ∗ sinθ . (11)

The geometric interpretation of dual angle is that θ is the real angle between the lines L1, L2 corresponding to the dual
unit vectors ã, b̃, respectively, and θ ∗ is the shortest distance between those lines [3].

In [14], Veldkamp introduced the dual geodesic trihedron of a ruled surface. Then, we speak to his procedure briefly as
follows:

Let dual unit vector ẽ(u) = e(u)+ εe∗(u) represents a dual curve (k̃). The spherical curve drawn by a unit vector e on the
real unit sphere S2 is called the (real) indicatrix of (k̃) and supposed that it is not a single point. If we consider the
parameter u as the arc-length parameter s of the real indicatrix, then we have ⟨e ′, e ′⟩ = 1 where e ′ = t is unit tangent
vector of the indicatrix. Let consider the equation e∗(s) = p(s)× e(s) which has infinity of solutions for the function
p(s). Taking po(s) as a solution, the set of all solutions is given by p(s) = po(s)+ λ (s)e(s), where λ is a real scalar
function of s. Then, we obtain ⟨p ′, e ′⟩ = ⟨p ′

o, e ′⟩ + λ . If we take λ = λo = −⟨p ′
o, e ′⟩, we have that

po(s)+λo(s)e(s) = c(s) is the unique solution for p(s) with ⟨c ′, e ′⟩ = 0. Then, the dual curve (k̃) corresponding to the
ruled surface

φe = c(s)+ ve(s), (12)

may be represented by dual unit vector

ẽ(s) = e+ εc× e, (13)

where

⟨e, e⟩= 1,
⟨
e ′, e ′⟩= 1,

⟨
c ′, e ′⟩= 0. (14)

Then we get

∥∥ẽ′
∥∥= t+ ε det(c ′,e, t) = 1+ ε∆ , (15)
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where ∆ = det(c ′,e, t). The dual arc-length s̄ of dual curve (k̃) is given by

s̄ =
s∫

0

∥∥ẽ′(u)
∥∥du =

s∫
0

(1+ ε∆)du =s+ ε
s∫

0

∆du. (16)

Then s̄′ = 1+ ε∆ . Therefore, the dual unit tangent to the curve ẽ(s) is

dẽ
ds̄

=
ẽ′

s̄′
=

ẽ′

1+ ε∆
= t̃ = t+ ε(c× t). (17)

Finally, defining dual unit vector g̃ = g+ εc×g by g̃ = ẽ× t̃, we have dual frame {ẽ, t̃, g̃} which is called dual Darboux
frame (dual geodesic trihedron) of φe(or (ẽ)). Moreover, the real orthonormal frame {e, t,g} along the striction curve of
ruled surface φe is called the Frenet frame of φe and has the derivative formulae

e ′ = t, t ′ = γg− e, g ′ =−γt, (18)

where γ is called the conical curvature [5]. Corresponding dual form of the formulae given in (18) for the dual frame
{ẽ, t̃, g̃} can be introduced as follows

dẽ
ds̄

= t̃,
dt̃
ds̄

= γ̄ g̃− ẽ,
dg̃
ds̄

=−γ̄ t̃, (19)

where

γ̄ = γ + ε(δ − γ∆), δ =
⟨
c ′,e

⟩
, (20)

and the dual darboux vector of the frame is d̃ = γ̄ ẽ+ g̃. From the definition of ∆ and (20), we also have

c ′ = δe+∆g. (21)

The dual curvature of dual curve (ruled surface) ẽ(s) is

R̄ =
1√

1+ γ̄2
. (22)

The unit vector d̃o of Darboux vector d̃ = γ̄ ẽ+ g̃ is given by

d̃o =
γ̄√

1+ γ̄2
ẽ+

1√
1+ γ̄2

g̃. (23)

Then, if ρ̄ is the dual angle between dual unit vectors d̃o and ẽ, we have

cos ρ̄ =
γ̄√

1+ γ̄2
, sin ρ̄ =

1√
1+ γ̄2

, (24)

where ρ̄ is the dual spherical radius of curvature and so, R̄ = sin ρ̄, γ̄ = cot ρ̄ (For details see [14]).

3 Characterizations for Mannheim surface offsets

Mannheim offsets of ruled surfaces have been defined by Orbay and et al as follows:

Definition 3.1.([7]) Assume that φ and φ∗ be two ruled surfaces in R3 with the parametrizations
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φ(s,v) = c(s)+ vq(s), ∥q(s)∥= 1,
φ∗(s,v) = c∗(s)+ vq∗(s), ∥q∗(s)∥= 1,

respectively, where (c) (resp. (c∗)) is the striction curve of ruled surfaces φ (resp. φ∗). Let the Frenet frames of ruled
surfaces φ and φ∗ be {q,h,a} and {q∗,h∗,a∗}, respectively. The ruled surface φ∗ is said to be Mannheim offset of the
ruled surface φ if there exists a one to one correspondence between their rulings such that the asymptotic normal vector
a of φ is the central normal vector h∗ of φ∗. In this case, (φ ,φ∗) is called a pair of Mannheim ruled surfaces.

Then, the dual version of Definition 3.1 can be given according to Darboux frame as follows:

Definition 3.2. Let consider the ruled surfaces φe and φe1 generated by dual unit vectors ẽ and ẽ1 and let

{ẽ(s̄), t̃(s̄), g̃(s̄)} and {ẽ1(s̄1), t̃1(s̄1), g̃1(s̄1)} be the dual Darboux frames of φe and φe1 , respectively. Then, φe and φe1

are called Mannheim surface offsets, if

g̃(s̄) = t̃1(s̄1), (25)

holds along the striction lines of the surfaces, where s̄ and s̄1 are the dual arc-lengths of φe and φe1 , respectively.

From definition 3.2, the relationship between trihedrons of ruled surfaces φe and φe1 is ẽ1

t̃1
g̃1

=

 cos θ̄ sin θ̄ 0
0 0 1
sin θ̄ −cos θ̄ 0


 ẽ

t̃
g̃

 , (26)

where θ̄ = θ + εθ ∗, (0 ≤ θ ≤ π, θ ∗ ∈ R) is dual angle between the generators ẽ and ẽ1 of Mannheim ruled surface φe

and φe1 . The real angle θ is called the offset angle and the real number θ ∗ is called the offset distance. Then,
θ̄ = θ + εθ ∗ is called dual offset angle of the Mannheim ruled surface φe and φe1 . If θ = 0 and θ = π/2 then the
Mannheim offsets are called oriented offsets and right offsets, respectively.

Theorem 3.1. Let φe and φe1 form a Mannheim surface offset. Then the relations between offset angle θ , offset distance

θ ∗ and arc length s are given by

θ =−s+ c, θ ∗ =−
s∫

0

∆du+ c∗, (27)

respectively, where c and c∗ are real constants.

Proof. Suppose that ruled surface φe1 is a Mannheim offset of ruled surface φe. Then (26) gives us

ẽ1 = cos θ̄ ẽ+ sin θ̄ t̃. (28)

Differentiating (28) with respect to s̄ gives

dẽ1

ds̄
=−sin θ̄

(
1+

dθ̄
ds̄

)
ẽ+ cos θ̄

(
1+

dθ̄
ds̄

)
t̃ + γ̄ sin θ̄ g̃. (29)

Since dẽ1
ds̄ and g̃ are linearly dependent, from (29) we get dθ̄

ds̄ =−1. Then for the dual constant c̄ = c+ εc∗ we write
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dθ̄ =−ds̄,
θ̄ =−s̄+ c̄,
θ + εθ ∗ =−s− εs∗+ c+ εc∗,

and from (16) we have

θ =−s+ c, θ ∗ =−
s∫

0

∆du+ c∗,

where c and c∗ are real constants.

Corollary 3.1. Let φe and φe1 form a Mannheim surface offset. Then φe is developable if and only if θ ∗ = c∗ = constant.

Proof. Since φe and φe1 form a Mannheim surface offset, we have Theorem 4.1. Thus from (27) we see that φe is

developable i.e. ∆ = 0 if and only if θ ∗ = c∗ = constant.

Theorem 3.2. Let φe and φe1 form a Mannheim surface offset. Then the relationship between the dual arc-length

parameters of φe and φe1 is given by

ds̄1

ds̄
= γ̄ sin θ̄ . (30)

Proof. Suppose that φe and φe1 form a Mannheim offset. Considering Theorem 3.1, we get

dẽ1

ds̄1
= t̃1 = γ̄ sin θ̄

ds̄
ds̄1

g̃. (31)

From (26) we have t̃1 = g̃. Then (31) gives us

γ̄ sin θ̄
ds̄
ds̄1

= 1, (32)

and from (32) we get (30).

Theorem 3.3. Let φe and φe1 form a Mannheim surface offset. Then there are the following relationships between the

real arc-length parameters and invariants of φe and φe1{
ds1
ds = γ sinθ ,

∆1 = θ ∗ cotθ + δ
γ .

(33)

Proof. Let φe and φe1 form a Mannheim surface offset. Then from Theorem 3.2, (30) holds. By considering (20), the real

and dual parts of (30) are

ds1

ds
= γ sinθ ,

dsds∗1 −ds∗ds1

ds2 = θ ∗γ cosθ +(δ − γ∆)sinθ , (34)

respectively. Furthermore from (16) we have

ds∗ = ∆ds, ds∗1 = ∆1ds1. (35)

Writing the equalities (35) in (34), we have (33).
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Corollary 3.2. Let φe and φe1 form a Mannheim surface offset. Then, the Mannheim offset φe1 is developable if and only

if

θ ∗ =−δ
γ

tanθ , (36)

holds.

Proof. Assume that φe and φe1 form a Mannheim surface offset. Then Theorem 3.3 holds. So, we have that φe1 is

developable i.e, ∆1 = 0 if and only if

θ ∗ =−δ
γ

tanθ . (37)

holds which finishes the proof.

Theorem 3.4. Let φe and φe1 form a Mannheim surface offset. Then

δ1 =
δ
γ

cotθ −θ ∗ (38)

holds.

Proof. Let the striction lines of φe and φe1 be c(s) and c1(s1), respectively and let φe and φe1 form a Mannheim surface

offset. Then, we can write

c1 = c+θ ∗g. (39)

Differentiating (39) with respect to s1 we have

dc1

ds1
=

(
dc
ds

−θ ∗γt+
dθ ∗

ds
g
)

ds
ds1

. (40)

From (20) we know that δ1 = ⟨dc1/ds1,e1⟩. Then from (26) and (40) we obtain

δ1 = (cosθ ⟨dc/ds, e⟩+ sinθ ⟨dc/ds, t⟩−θ ∗γ sinθ ⟨ t, t⟩) ds
ds1

. (41)

Since δ = ⟨dc/ds,e⟩ and ⟨dc/ds, t⟩= 0, from (41) we write

δ1 = (δ cosθ −θ ∗γ sinθ)
ds
ds1

. (42)

Furthermore, from (33) we have

ds
ds1

=
1

γ sinθ
, (43)

and substituting (43) in (42) we obtain

δ1 =
δ
γ

cotθ −θ ∗.

Theorem 3.5. Let φe and φe1 form a Mannheim surface offset. The conical curvature of φe1 is obtained as follows,
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γ1 = cotθ . (44)

Proof. From (18) and (26) we have

γ1 =−⟨g ′
1, t1⟩

=−
⟨

d
ds1

(sinθe− cosθ t), g
⟩ (45)

which gives

γ1 = γ cosθ
ds
ds1

. (46)

From the first equality of (33) and (46) we have (44).

Theorem 3.6. Let φe and φe1 form a Mannheim surface offset. Then, there exits the following relation between dual

curvature R̄1 of φe1 and dual offset angle θ̄ ,

R̄1 = sin θ̄ . (47)

Proof. From (22) and (44), Eq. (47) is obtained immediately.

From Eq. (23), (24) and Theorem 3.6, we have the following corollaries.

Corollary 3.3. Let φe and φe1 form a Mannheim surface offset. Then, dual unit Darboux vector d̃01 of φe1 is given by

d̃01 = cos θ̄ ẽ1 + sin θ̄ g̃1, (48)

and from (26) it means that the ruled surface generated by dual unit Darboux vector d̃01 of φe1 is a Mannheim offset of
φe1 .

Corollary 3.4. Let φe and φe1 form a Mannheim surface offset. Then, the relation between dual offset angle and dual

conical curvature γ̄1 of φe1 is given by

cos θ̄ =
γ̄1√

1+ γ̄2
1

, sin θ̄ =
1√

1+ γ̄2
1

. (49)

Moreover, from Eq. (26) and Corollary 3.4, we have the following corollary.

Corollary 3.5. Let φe and φe1 form a Mannheim surface offset. Then, the relation between dual Darboux frames of the

surfaces is given by

 ẽ1

t̃1
g̃1

=


γ̄1√
1+γ̄2

1

1√
1+γ̄2

1
0

0 0 1
1√

1+γ̄2
1
− γ̄1√

1+γ̄2
1

0


 ẽ

t̃
g̃

 . (50)

Example 3.1. Let consider the hyperbolic paraboloid surface φe given by the parametrization

c⃝ 2015 BISKA Bilisim Technology



NTMSCI 3, No. 3, 35-45 (2015) / www.ntmsci.com 43

φe(s,v) =
(

1
2

s,
1
2

s, 0
)
+ v
(

1
2
, −1

2
, s
)
, (51)

and rendered in Fig. 1.

Fig. 1: Hyperbolic paraboloid surface φe.

From the E. Study Mapping, the dual spherical curve representing (51) is

ẽ(s) =

√
2√

1+2s2

[(
1
2
,−1

2
,s
)
+ ε
(

1
2

s2,−1
2

s2,−1
2

s
)]

. (52)

Then, the dual Darboux frame of φe is obtain as follows

ẽ(s) =
√

2√
1+2s2

[( 1
2 ,−

1
2 ,s
)
+ ε
( 1

2 s2,− 1
2 s2,− 1

2 s
)]

t̃(s) = 1√
1+8tan2(

√
2s)

[(
−2tan(

√
2s),2tan(

√
2s),1

)
+ε
(

tan(
√

2s),− tan(
√

2s),4tan2(
√

2s)
)]

g̃(s) =
(
−

√
2

2 ,−
√

2
2 ,0

)
The general equation of the Mannheim offset surface of φe is

φe1(s,v) =
(

1
2 s−θ ∗

√
2

2 , 1
2 s−θ ∗

√
2

2 , 0
)

+ v
( √

2√
1+2s2

cosθ
( 1

2 , −
1
2 , s
)
+ sinθ

(
−

√
2

2 ,−
√

2
2 ,0

))
.

(53)
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Fig. 2: Mannheim offset φe1 with dual offset angle θ̄ = 0+ ε4
√

2.

Fig. 3: Mannheim offset φe1 with dual offset angle θ̄ = π/4+ ε2
√

2.

From (53) we can give the following special cases:

i) The Mannheim offset φe1 with dual offset angle θ̄ = 0+ ε4
√

2 is

φe1(s,v) =
(

1
2

s−4,
1
2

s−4, 0
)
+ v

( √
2√

1+2s2
,−

√
2√

1+2s2
,

√
2s√

1+2s2

)
which is an oriented offset of φe(Fig. 2).

ii) The Mannheim offset φe1 with dual offset angle θ̄ = π/4+ ε2
√

2 is
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φe1(s,v) =
(

1
2

s−2,
1
2

s−2, 0
)
+ v
(

1
2
√

1+2s2
− 1

2
,

−1
2
√

1+2s2
− 1

2
,

s√
1+2s2

)

4 Conclusions

In the surface theory, offset surfaces have an important role and large applications in many areas. Especially, the ruled
surface offsets are interesting since these surfaces can be generated by a continuous moving of a straight line. In this
paper, some new results including the characterizations of Mannheim surface offsets have been obtained in dual space.
Furthermore, the relationships for Mannheim surface offsets to be developable have been introduced.
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