
NTMSCI 5, No. 1, 225-233 (2017) 225

New Trends in Mathematical Sciences
http://dx.doi.org/10.20852/ntmsci.2017.141

A new method for solving nonlinear fractional differential
equations
Serife Muge Ege and Emine Misirli

Department of Mathematics, Ege University, Bornova, Izmir-Turkey

Received: 12 June 2016, Accepted: 30 June 2016
Published online: 19 March 2017.

Abstract: In this paper, a new extended Kudryashov method for solving fractional nonlinear differential equations is proposed. The
fractional derivative in this paper is considered in the sense of modified Riemann-Liouville. We also handle the time-fractional
fifth−order Sawada−Kotera equation and the time-fractional generalized Hirota−Satsuma coupled KdV equation to illustrate the the
simplicity and the effectiveness of this method. Solutionsof these equations are obtained in analytical traveling wave solution form
including hyperbolic and trigonometric functions.
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1 Introduction

The development of theory of fractional calculus has afforded additional perspectives for the theory of fractional
calculus, especially in modeling dynamical processes in fluids and porous structures [25,27]. Fractional derivatives also
appear in the theory of control of dynamical systems, when the controlled system is delineated by fractional differential
equations. Studies, have shown that a fractional order controller can provide better performance than an integer order
controller. The mathematical modeling and simulation of systems and processes naturally leads to differential equations
of fractional order and to requirement to solve such equations [2,23].

Numerical methods for solving fractional differential equations have an intense period from both theoretical and the
viewpoint of applications in physics, chemistry, fluid mechanics, quantum mechanics and other fields of science. In
literature, exact solutions of fractional differential equations have attracted the attention of researcher from different
fields. Several research works have proposed techniques forsolving fractional differential equations, such as
G′/G−expansion method [3,28,30] , Exp−function method [12,29], first integral method [1,8,19,22], sub−equation
method [13,24,32], Jacobi elliptic funtion method [9,11,26,31] , modified Kudryashov method [4,5,6,17,20], extended
tanh method [7],modified simple equation method [18] and others.

In recent years, the time-fractional fifth-order Sawada−Kotera equation and the time-fractional Hirota-Satsuma coupled
KdV equation appear in mathematical modeling of physical phenomena such as dispersive media. Moreover, traveling
wave solutions of these equations have been studied in [10,21,26,30,28,32], the symmetrical Fibonacci function
solutions and hyperbolic function solutions have been obtained by classical Kudryashov method in [6].

In this paper we propose a new extended Kudryashov method forfractional differential equations based on homogenous
balancing principle by means of traveling wave transformation. In this method, by using the transformation

ξ = kxβ

Γ (1+β ) +
nyγ

Γ (1+γ) +
mzδ

Γ (1+δ ) + · · ·+ λ tα

Γ (1+α)
, a given fractional differential equation turn into fractional ordinary

differential equation whose solutions are in the formu(ξ ) = ∑N
i=0aiQi(ξ ), whereQ(ξ ) satisfies the fractional Riccati
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equationDα
ξ Q = Q3 − Q. In addition, we handle the time-fractional fifth-order Sawada-Kotera equation and the

time-fractional Hirota-Satsuma coupled KdV equation, then the feedback is implemented in Mathematica. Figures and
results show the effectiveness of the proposed method in comparision with the classical method. The paper is organized
as follows. Section 2 gives an overview of Jumarie’s fractional derivative [14,15]. Section 3 presents the extended
Kudryashov method procedure. Illustrative examples are given in Section 4 to attest the effectiveness of the proposed
method. We finish with Section 5 providing conclusions.

2 Preliminaries

Definition 1. A real function f(t), t > 0, is said to be in the space Cκ , κ ∈ R, if there exists areal number p> κ such that
f (t) = t p f1(t), where f1(t) ∈C(0,∞), and it is said to be in the space Cm

κ if f m ∈Cκ ,m∈ N [26,27].

Definition 2. The modified Riemann-Liouville derivative is defined as [26,27]:

Dα
x f (x) =















1
Γ (1−α)

d
dx

∫ x

0
(x− ξ )−α [ f (ξ )− f (0)]dξ , 0< α ≤ 1,

( f (n)(x))α−n, n≤ α < n+1, n≥ 1.

(1)

where

Dα
x f (x) := lim

h↓0
h−α

∞

∑
k=0

(−1)k f [x+(α − k)h]. (2)

Moreover, some properties for the proposed modified Riemann-Liouville derivative are given in [16] as follows:

Dα
t tγ =

Γ (1+ γ)
Γ (1+ γ −α)

tγ−α , γ > 0, (3)

Dα
t c= 0, (4)

Dα
t (c1 f (t)+ c2g(t)) = c1Dα

t f (t)+ c2Dα
t g(t), (5)

wherec,c1,c2 are constants and (3),(4),(5) are direct results of the equalityDαx(t) = Γ (1+α)Dx(t) which holds for
non-differentiable functions.

3 The extended Kudryashov method

We present the main steps of the extended Kudryashov method as follows.

For a given nonlinear FDEs for a functionu of independent variables,X = (x,y,z, . . . , t):

F
(

u,ut ,ux,uy,uz, . . . ,D
α
t u,Dα

x u,Dα
y u,Dα

z u, . . .
)

= 0. (6)

whereDα
t u,Dα

x u,Dα
y u andDα

z u are the modified Riemann-Liouville derivatives ofu with respect tot,x,y andz. F is a
polynomial inu= u(x,y,z, . . . , t) and its various partial derivatives, in which the highest order derivatives and nonlinear
terms are involved.

Step 1.We investigate the traveling wave solutions of Eq.(6) by making the transformations in the form:

u(x,y,z, . . . , t) = u(ξ ), ξ =
kxβ

Γ (1+β )
+

nyγ

Γ (1+ γ)
+

mzδ

Γ (1+ δ )
+ · · ·+ λ tα

Γ (1+α)
, (7)
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wherek,n,mandλ are arbitrary constants. Then Eq.(6) reduces to a nonlinear ordinary differential equation of the form:

G= (u,uξ ,uξ ξ ,uξ ξ ξ , . . .) = 0. (8)

Step 2.We suppose that the reduced equation admits the following solution:

u(ξ ) =
N

∑
i=0

aiQ
i(ξ ) (9)

whereQ(ξ ) = ±1√
1±e2ξ

and the functionQ is the solution of equation

Qξ (ξ ) = Q3(ξ )−Q(ξ ). (10)

Step 3.According to the method, we assume that the solution of Eq.(8) can be expressed in the form

u(ξ ) = aNQN + · · · . (11)

In order to determine the value of the pole orderN, we balance the highest order nonlinear terms in Eq.(8) analogously
as in the classical Kudryashov method. Supposingul (ξ )u(s)(ξ ) and(u(p)(ξ ))r are the highest order nonlinear terms of
Eq.(2.8) and balancing the highest order nonlinear terms wehave:

N =
2(s− rp)
r − l −1

. (12)

Step 4.Substituting Eq.(9) into Eq.(8) and equating the coefficients ofQi to zero, we get a system of algebraic equations.
By solving this system, we obtain the exact solutions of Eq.(6). And the obtained solutions can depend on hyperbolic
functions.

4 Examples

4.1 Time-Fractional Fifth-Order Sawada-Kotera Equation

We consider the following the time-fractional fifth-order Sawada-Kotera equation

Dα
t u+uxxxxx+45uxu

2+15(uxuxx+uuxxx) = 0. (13)

wheret > 0, 0< α ≤ 1 is an important unidirectional nonlinear evolution equation which belongs to many set of
conservation rule in physics and modeling the waves that disperse opposite directions.
By considering the traveling wave transformation

u(x, t) = u(ξ ), ξ = kx+
ctα

Γ (1+α)
.

wherek,c 6= 0 are constants. Equation (13) can be reduced to the following ordinary differential equation:

cu′+ k5u(5)+45kuu′+15k3(u′u′′+uu′′′) = 0. (14)

Also we take
u(ξ ) = a0+a1Q+ · · ·+aNQN (15)
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whereQ(ξ ) = ±1√
1±e2ξ

. We note that the functionQ is the solution ofQ′(ξ ) = Q3(ξ )−Q(ξ ). Balancing the the linear

term of the highest order with the highest order nonlinear term in Eq.(14), we compute

N = 4. (16)

Thus, we have
u(ξ ) = a0+a1Q(ξ )+a2Q

2(ξ )+a4Q
3(ξ )+a4Q

4(ξ ) (17)

and substituting derivatives ofu(ξ ) with respect toξ in Eq.(14) we obtain

u′(ξ ) = 4a4Q6(ξ )+3a3Q
5(ξ )+ (2a2−4a4)Q

4(ξ )+ (a1−3a3)Q
3(ξ )−2a2Q

2(ξ )−a1Q(ξ ), (18)

u′′(ξ ) = 24a4Q8(ξ )+15a3Q
7(ξ )+ (8a2−40a4)Q

6(ξ )+ (3a1−24a3)Q
5(ξ )

+ (16a4(ξ )−12a2Q
4(ξ )+ (9a3−4a1)Q

3(ξ )+4a2Q
2(ξ )+a1Q(ξ ), (19)

u′′′(ξ ) = 192a4Q
10(ξ )+105a3Q

9(ξ )+ (48a2−432a4)Q
8(ξ )

+ (15a1−225a3)Q
7(ξ )+ (304a4−96a2)Q

6(ξ )

+ (147a3−27a1)Q
5(ξ )+ (56a2−64a4)Q

4(ξ )+ (13a1−27a3)Q
3(ξ )

−8a2)Q
2(ξ )−a1Q(ξ ), (20)

u(iv)(ξ ) = 1920a4Q
12+945a3Q

11(ξ )+ (384a2−53760)Q10(ξ )

+ (105a1−2520a3)Q
9(ξ )+ (5280a4−960a2)Q

8(ξ )

+ (2310a3−240a1)Q
7(ξ )+ (800a2−2080a4)Q

6(ξ )

+ (174a1−816a3)Q
5(ξ )+ (256a4−240a2)Q

4(ξ )+ (81a3−40a1)Q
3(ξ )

+16a2Q
2(ξ )+a1Q(ξ ), (21)

u(v)(ξ ) = 23040a4Q
14(ξ )+10395a3Q

13(ξ )+ (3840a2−76800a4)Q
12(ξ )

+ (945a1−33075a3)Q
11(ξ )+ (96000a4−11520a2)Q

10(ξ )

+ (38850a3−2625a1)Q
9(ξ )+ (12480a2−54720a4)Q

8(ξ )

+ (2550a1−20250a3)Q
7(ξ )+ (13504a4−5760a2)Q

6(ξ )

+ (4323a3−990a1)Q
5(ξ )+ (992a2−1024a4)Q

4(ξ )

+ (121a1−243a3)Q
3(ξ )−32a2Q

2(ξ )−a1Q(ξ ). (22)

Substituting Eqs.(18−4.10) into Eq.(14) and collecting the coefficient of each power ofQi , setting each of coefficient to
zero, solving the resulting system of algebraic equations we obtain the following solutions.

Case 1.
a0 =−1, a1 = 0, a2 = 16, a3 = 0
a4 =−16, k=−

√
3, c=−81

√
3.

(23)

Inserting Eq.(23) into Eq.(17), we obtain the following solutions of Eq.(13)

u1(x, t) =−1+ 4

cosh2
[

−2
√

3
(

x+ 81tα
Γ (1+α)

)] ,

u2(x, t) =−1+ 4

sinh2
[

−2
√

3
(

x+ 81tα
Γ (1+α)

)] .

Case 2.
a0 =−1, a1 = 0, a2 = 16, a3 = 0
a4 =−16, k=

√
3, c= 81

√
3.

(24)
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Inserting Eq.(24) into Eq.(17), we obtain the following solutions of Eq.(13):

u3(x, t) =−1+ 4

cosh2
[

2
√

3
(

x+ 81tα
Γ (1+α)

)] ,

u4(x, t) =−1+ 4

sinh2
[

2
√

3
(

x+ 81tα
Γ (1+α)

)] .

Case 3.

a0 =
1
9
(3−4k2), a1 = 0, a2 =

16k2

3
, a3 = 0

a4 =−16k2

3
, k= k, c=

1
3
(32k5−45k).

(25)

Inserting Eq.(25) into Eq.(17), we obtain the following solutions of Eq.(13)

u5(x, t) = 1
9(3−4k2)+ 4k2

3cosh2
[

2k

(

x+ (32k4−45)tα
3Γ (1+α)

)] ,

u6(x, t) = 1
9(3−4k2)+ 4k2

3cosh2
[

2k

(

x+ (32k4−45)tα
3Γ (1+α)

)] .

Fig. 1: Solution of (13) at k=−
√

3, c=−81
√

3 andα = 0.5.

Figure1 shows hyperbolic wave structure of the solution of time-fractional fifth-order Sawada-Kotera equation.
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Remark 1. Whereas two solutions were obtained by classical Kudryashov method in [6], six solutions are obtained by
this method. In case 3, polynomial coefficients and parameters are in the same equivalence class with the solutions
ontained by classical method. Moreover, increase in k parameter effects the wavelenght and speed of the wave. Thus, the
wave is achieved faster progress.

4.2 Time-fractional Hirota-Satsuma coupled KdV equation

We apply the above method to the space-time fractional Hirota-Satsuma-coupled KdV equation:

Dα
t u=

1
4

uxxx+3uux+3(−v2+w)x,

Dα
t v=−1

2
vxxx−3uvx,

Dα
t w=−1

2
wxxx−3uwx

whereu= u(x, t), v= v(x, t) andw= w(x, t), t > 0, 0< α ≤ 1. This system models the interaction between two long
waves that have distinct dispersion relation.
For our purpose, we use the transformations

u(x, t) = 1
λ u2(ξ ), v(x, t) =−λ +u(ξ ), w(x, t) = 2λ 2−2λu(ξ ),

whereξ = x− λ tα

Γ (1+α) then Eqs.(26) reduced to the ordinary differential equation as follows:

λu
′′
+2u3−2λ 2u= 0. (26)

Also we take

g(ξ ) = u(ξ ) =
N

∑
i=0

aiQ
i (27)

whereQ(ξ ) =± 1
(1±e2ξ )1/2 . We note that the functionQ is the solution ofQ′(ξ ) = Q3(ξ )−Q(ξ ). Balancingu′′ andu3 in

Eq.(26), we compute
N = 2. (28)

Thus, we have
u(ξ ) = a0+a1Q(ξ )+a2Q

2(ξ ) (29)

and taking derivatives ofu(ξ ) with respect toξ , we obtain

u′(ξ ) = 2a2Q4(ξ )+a1Q
3(ξ )−2a2Q

2(ξ )−a1Q(ξ ), (30)

u′′(ξ ) = 8a2Q6(ξ )+3a1Q
5(ξ )−12a2Q

4(ξ )−4a1Q
3(ξ )+4a2Q

2(ξ )+a1Q(ξ ) (31)

Substituting Eq.(30) and Eq.(31) into Eq.(26) and collecting the coefficient of each power ofQi , setting each of
coefficient to zero, solving the resulting system of algebraic equations we obtain the following solutions.

Case 1.
a0 =−1, a1 = 0, a2 = 2 λ =−1. (32)

Inserting Eq.(32) into Eq.(29), we obtain the following solutions of Eqs.(26)

u1(x, t) =−tanh2
[

2x+ 2tα

Γ (1+α)

]

,

v1(x, t) = 1− tanh
[

2x+ 2tα

Γ (1+α)

]

,

w1(x, t) = 2−2tanh
[

2x+ 2tα

Γ (1+α)

]

.
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u2(x, t) =−coth2
[

2x+ 2tα

Γ (1+α)

]

,

v2(x, t) = 1− coth
[

2x+ 2tα

Γ (1+α)

]

,

w2(x, t) = 2−2coth
[

2x+ 2tα

Γ (1+α)

]

.

.

Case 2.
a0 = 1, a1 = 0, a2 =−2 λ =−1. (33)

Inserting Eq.(4.2) into Eq.(29), we obtain the following solutions of Eqs.(26)

u3(x, t) =−tanh2
[

2x+ 2tα

Γ (1+α)

]

,

v3(x, t) = 1+ tanh
[

2x+ 2tα

Γ (1+α)

]

,

w3(x, t) = 2+2tanh
[

2x+ 2tα

Γ (1+α)

]

.

u3(x, t) =−coth2
[

2x+ 2tα

Γ (1+α)

]

,

v3(x, t) = 1+ coth
[

2x+ 2tα

Γ (1+α)

]

,

w3(x, t) = 2+2coth
[

2x+ 2tα

Γ (1+α)

]

.

.

Fig. 2: Solution of u(x,t) in (26) atλ =−1 andα = 0.5.

Figure2 shows the hyperbolic wave structure of the space-time fractional Hirota-Satsuma-coupled KdV equation.
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Remark 2. Although the obtained solutions of space-time fractional Hirota-Satsuma-coupled KdV equation are in the
similar structure and the same equivalence class of the solutions obtained classical Kudryashov method, coefficients of
polynomial andλ parameter that determines the speed of wave, are increased by four times. Altering inλ parameter
provides the increase in speed of the wave.

5 Conclusion

In this work, we have proposed a new extended Kudryashov method to solve nonlinear fractional differential equations
with the help of Mathematica. By this way, degree of the auxilary polynomials are increased and more solutions are
provided an opportunity for some models. The time-fractional fifth-order Sawada-Kotera equation and the space-time
fractional Hirota-Satsuma-coupled KdV equation are handled to demonstrate the effectiveness of the proposed method.In
comparision with the classical Kudryashov method, more traveling wave solutions are obtained. In addition, change in the
parameters that determine the speed of the wave effects boththe wavelenght and the speed of the solutions. Consequently,
the method is effective and convenient for solving other type of space-time fractional differential equations in whichthe
homogenous balance principle is satisfied.
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