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Abstract: This work deals with cracks identification from over-determined boundary data. The consideration physical phenomena
corresponds to the transient heat equation. we give a theoretical result of identifiability for the inverse problem under consideration.
Then, we consider a recovering process based on coupling domain decomposition method and minimizing an energy-type error
functional. The efficiency of the proposed approach is illustrated by several numerical results.
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1 Introduction

Various works tackled the problem of the detection of interior cracks in a given physical body from abundant boundary
data. The involved physical can be either thermal, electrostatica, acoustical or elastostatital. Such a problem arises in
different engineering fields such as non-destructive testing of materials. Up to our knowledge, there are very few
quasi-explicit methods. These methods does not allow the recovring the crack, they give only qualitative results
(information on the shape and the location of the crack). Further more, they are usually based on the essential assumption
that the over determined boundary data are ’complete’, which means that they are known on the whole outer boundary of
the body (Andrieux and Ben Abda 1996 [4]; Brühl et al. 2001 [14]; Baratchart et al. 1999 [7]).

Typically, the identification of cracks is an ill-posed inverse problem, in the sense of Hadamard [18]. Theoretical results
on identiÂfiability of cracks are seldom and mainly focus on the Laplace equation. In [16], Friedman and Vogelius
proved that two appropriate current fluxes, together with the corresponding voltages, are necessary and suffice to
uniquely determine a single crack. Bryan and Volgelius [15] , followed by Alessandrini and Diaz Valenzuela [1]
examined the multiple crack problem always in 2D situation.

In the case of the transient heat equation, A. Ben Abda and H. D. Bui [9] proposed a theoretical technique of the
identification of planar crack based on the reciprocity gap concept.

Due to the ill-posedness character of the problem of cracks identification, there is a growing need for specified
computational methods for their numerical resolution. The aim of this work is to solve the problem of identification of
cracks in transient heat problem, from the measurement on outer edge, by the domain decomposition method (DDM) and
virtual control. The approach that we propose consists in using the DDM method in order to transform the problem of
crack identification into two boundary inverse problems. The later are them selfs classical ill-posed problems and there
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are several works which are dedicated for their numerical treatment [8,12,28]. Classical approaches using a least-squares
formulation were proposed [11,13,25] and which require some regularization tool to solve these ill-posed problems.

Here, for each boundary inverse problem, we consider an approach based on an energy norm defined from two
well-posed problems, which appears to be self-regularizing [2,3]. There are several ways to minimize an energy norm
which use a least-squares formulation. We extend the method introduced in [19,23] for the steady-state case, whereas we
consider here a transient case. The idea is to write the first-order optimality conditions as an interface interfacial problem
[11]. After that, we apply a preconditioned iterative gradient algorithm, at each time step, [24], which appears to be very
efficient.

This paper is organized as follows. In section 2, the forward problem is presented. Section 3 is devoted to the
identifiability result from one single measurement. In Section 4, we introduce the method of the fictitious domain
decomposition and virtual control applied to the identification of a crack from boundary measurements and in section 5,
we present some numerical experiments which illustrate the efficiency of the method.

2 Problem setting

Let Ω be a bounded connected open domain of R2 with a smooth boundary Γc. We suppose that Ω contains exactly one
crack σ strictly included into Ω (see Fig. 1). In the whole paper, we assume that σ is C2 non self-intersecting compact
curve with a finite length. We denote by S1 and S2 its extremities and by Ωσ the domain Ω\σ .

Let ( f ,g) be the measurement and the flux on the boundary Γc = ∂Ω which supposed to be accessible for measurement
over a time interval [0,T ] , T > 0. In the domain Ωσ , we define the following problem:



∂tu−∆u = 0, in Ωσ × [0,T ],
∇u ·ν = g, on Γc × [0,T ],
u = f , on Γc × [0,T ],
∇u ·ν = 0, on σ × [0,T ],
u(x,0) = 0, in Ωσ .

(1)

Fig. 1: Domain Ωσ .

3 Identifiability for the inverse problem

The inverse problem that we are discussing is the following: Setting a flux g on the external part of the boundary Γc, and
measuring u on some non empty open subset M of Γc, we try to recover the unknown crack σ .

We will give in the following theorem the identifiability result, which means that different pairs of crack with
C2-boundary may not produce same measurement on the boundary, provided the prescribed flux indeed generate
singularity at both type of the actual crack.
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Fig. 2: Intersecting cracks with different cracktips.

Fig. 3: Intersecting cracks with same cracktips.

Theorem 1. (Geometrical identifiability) Let σ1 and σ2 be two cracks with C2-boundary. Assume a prescribed flux g
generating singularities at both extremities of the actual crack (for example σ1), also generates equal measurements on
M. Therefore σ1 ≡ σ2 := σ , and u1 ≡ u2 := u on Ωσ × [0,T ].

Proof. Let u1, respectively, u2 solve the forward problem in Ωσ1 × [0,T ], respectively, in Ωσ2 × [0,T ]. Let w := u1 − u2

their difference, hence w solve the following problem:
∂tw−∆w = 0, in Ω\(σ1 ∪σ2)× [0,T ],

∇w ·ν = 0, on Γ × [0,T ],

w = 0, on M× [0,T ],

w(x,0) = 0, on Ω .

By unique continuation theorem, we can derive that w ≡ 0 on the external connected component Ωe of Ω\(σ1 ∪σ2)×
[0,T ], i.e, the one having M as part of its boundary. Assuming σ1 ̸= σ2, two situations may occur:

(a) The cracks are disconnected: in the case Ωe = Ω\(σ1 ∪σ2), u1 is not continuous across σ1 because of its singular
parts but u2 is continuous across σ1. Then, this situation is not possible.

(b) The cracks are intersecting: in that case the cracks cannot have different endpoints (see Fig. 2), because u1 have
singular parts. Otherwise, u2 would be singular at the vicinity of an endpoint of σ1 which is an internal point either to
Ω \σ2. Since, σ1 and σ2 have the same crack tips (see Fig. 3), then the boundary of Ωe is composed by Γ and upper
or lower parts of σ1 and σ2. Let Oi be any connected component of Ω\(σ1 ∪σ2 ∪Ωe). This boundary is necessarily
composed by part of σ1 and σ2.
The functions u1, ∇u1 · ν and ∇u2 · ν are continuous across σ2. On the other hand u1 ≡ u2 in Ωe × [0,T ]. Hence,
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∇u1 ·ν = ∇u2 ·ν on ∂Ωe × [0,T ], including the external part of σ1 and σ2 then we have

∇w ·ν = 0 on σ2 × [0,T ].

Following the same procedure, on can derive that

∇w ·ν = 0 on σ1 × [0,T ],

where w is solution of the homogeneous heat equation with homogeneous Neumann data on σ1. By
Cauchy-Kovalevskaya theorem [22], one can deduce that [w] is real analytic on σ1 then w = ki on σ1 ∩ ∂Oi × [0,T ]
and since w is null in Ωe, this yields: where

[u1] = [w] =±ki, on σ1 ∩Oi × [0,T ],

where [u1] is piecewise constant on σ1 which is not possible unless it is constant on the whole of σ1 since no

discontinuity is allowed to function in H
1
2

00(σ1 × [0,T ]). Hence:

[u1] = [w] = ki, on σ1 × [0,T ],

where [u1] ∈ H
1
2

00(σ1 × [0,T ]) and thus vanishes at the endpoints of σ1. The constant k cannot be other then zero,
making u1 continues across σ1 × [0,T ] and hence not singular, which contradicts the assumptions made on the flux,
the cracks cannot these intersect either. This leads to σ := σ1 ≡ σ2 an according to u := u1 ≡ u2 on Ωσ × [0,T ].

Remark 1 The solution u of the heat equation admits the following decomposition into a regular part and a singular one:

u(x, t) = ureg(x, t)+using(x, t) in V \σ × [0,T ],

where:

–V is a neighborhood of σ .
–ureg ∈ H2(Ωσ × [0,T ]).

–using is written in front of the crack by: using = ∑i=1,2 ci(t)r
1
2
i sin( θi

2 ).

–(ri,θi) are polar coordinates centered at Si such that the half-lines θi = 0 and θi = 2π are tangent to σ at Si.
–ci(t) is the coefficient of singularity related to the extremity Si.

Remark 2 In [17], Grisvard gave a characterization convolution of the coefficients of singularities by using the Laplace
equation and the Fourier transform. Moussaoui [26], also, obtained an explicit expansion based on Bessel functions.

4 Domain decomposition and virtual control

4.1 Statement of the inverse problem

We assume that we know the interface plane Γi containing the crack σ . Then, the inverse problem consists in finding the
position of the crack on Γi, while, having u which solves the following equation:

∂tu−∆u = 0 in Ωσ × [0,T ],

∇u ·ν = g on Γc × [0,T ],

u = f on Γc × [0,T ],

u(x,0) = 0 in Ω ,

(P)
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Fig. 4: Decomposition of the domain Ω into two adjacent sub-domains.

where ( f ,g) is a pair related to measurement and flux on Γ × [0,T ] of the direct problem (1). We suppose that the domain
Ω is partitioned into two adjacent sub-domains Ω+ and Ω− such that Ω = Ω+∪Ω−, and Γi = Ω+∩Ω− is the common
interface between them (see Fig. 4). Let us define the following Cauchy problem in the sub-domain Ω+:

∂tu+−∆u+ = 0 in Ω+× [0,T ],

∇u+ ·ν = g on Γ +
c × [0,T ],

u+ = f , on Γ +
c × [0,T ],

u+(x,0) = 0 in Ω+.

(P+)

With ( f ,g) defined in (1) as Dirichlet and Neumann boundary conditions in Γ +
c .

Similarly, let ( f ,g) be a data on Γ −
c we define in the sub-domain Ω− the following Cauchy problem:

∂tu−−∆u− = 0 in Ω−× [0,T ],

∇u− ·ν = g on Γ −
c × [0,T ],

u− = f on Γ −
c × [0,T ],

u−(x,0) = 0 in Ω−.

(P-)

The Cauchy problems (P+) and (P-) are ill-posed in the sense of Hadamard [18]. Existence of solutions for arbitrary
Cauchy data f and g is not guaranteed and depends on the compatibility of f and g. The theoretical results of existence
and uniqueness of the problems (P+) and (P-) are given in [21].

The localization of the crack can be achieved by solving Cauchy porblems (P+) and (P-). In fact, it is easy to see that
when we solve both problems (P+) and (P-) it amounts to solve the Cauchy problem (P). In addition, the crack can be
appear as parts of the boundary Γi where the jump [[u]] = u+−u− is not null.

4.2 Time discretization of the Cauchy problems

From the numerical resolution of the equation (P+) and (P-) we consider a time-discretization based on forward Euler
finite difference scheme. First, let us introduce the discretization of the time interval [0,T ] into n sub-intervals by:

0 = t0 < t1 < · · ·< tn−1 < tn = T, n ∈ N∗,
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where tn = nδ t, and, δ t = T
n = tn − tn−1 is the time step. We approximate ∂tu by the forward Euler scheme as follows:

∂tu =
un+1 −un

δ t
, at t = tn+1.

Therefore, we look for u+
n+1

and u−
n+1

which are solutions of the following problems:
u+

n+1 −δ t∆u+
n+1

= u+
n

in Ω+,

∇u+
n+1 ·ν = g on Γ +

c ,

u+
n+1

= f on Γ +
c .

(2)


u−

n+1 −δ t∆u−
n+1

= u−
n

in Ω−,

∇u−
n+1 ·ν = g on Γ −

c ,

u−
n+1

= f on Γ −
c .

(3)

The goal is to find, at each step of time, the solution u+
n+1

and u−
n+1

in Ω+ and Ω−, respectively.

4.3 Virtual control approach

In the sequel, we explain the domain decomposition and the virtual control approach applied for the problem (2), and the
application of this approach to problem (3) is similar. For brevity’s sake, we set λ := λ n(λ at tn) and we use the notation
u instead of u+ in the problem (2).

We search un+1
D and un+1

N solutions of the following well posed problems:
un+1

D −δ t∆un+1
D = un in Ω+,

un+1
D = f on Γ +

c ,

un+1
D = λ on Γi.

(4)


un+1

N −δ t∆un+1
N = un in Ω+,

∇un+1
N ·ν = g on Γ +

c ,

un+1
N = λ on Γi.

(5)

The function λ ∈ H
1
2 (Γi), which represents the virtual control, is chosen such that uD and uN ”adjust” in the best possible

way in Ω+.

To this aim, we introduce the following minimization problem:

inf
λ∈H

1
2 (Γi)

J(λ ), (6)

where the cost functional J(.) is given by:

J(·) = δ t
2

∫
Ω+

(∇un+1
D (·)−∇un+1

N (·))2dx+
1
2

∫
Ω+

(un+1
D (·)−un+1

N (·))2. (7)
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The minimization problem (6) has a unique solution. Now, for simplicity, we use the notation un+1
N by uN instead of un+1

D

by uD, respectively. Indeed, let us rewrite the solution uD and uN respectively of (4) and (5) as:

uD = u0
D +uλ

D; uN = u0
N +uλ

N , (8)

where u0
D and u0

N depend only on the data f and g , uλ
D and uλ

N depend only on λ , and satisfy

u0
D −δ t∆u0

D = vD in Ω+, u0
D = f on Γ +

c , u0
D = 0 on Γi, (9a)

uλ
D −δ t∆uλ

D = 0 in Ω+, uλ
D = 0 on Γ +

c , uλ
D = λ on Γi, (9b)

and

u0
N −δ t∆u0

N = vN in Ω+, ∇u0
N ·ν = g on Γ +

c , u0
N = 0 on Γi, (10a)

uλ
N −δ t∆uλ

N = 0 in Ω+, ∇uλ
N ·ν = 0 on Γ +

c , uλ
N = λ on Γi, (10b)

where vD = un
D and vN = un

N . Then

J(λ ) =
1
2

Q(λ )+L (λ ),

where the quadratic functional Q is given by

Q(λ ) =
∫

Ω+
(∇uλ

D −∇uλ
N)

2 +
1
δ t

∫
Ω+

(uλ
D −uλ

N)
2,

and L is an affine functional. Consequently, if the function λ is smooth enough, one can define the following semi-norm
on the space of admissible functional λ

|||λ ||| := (Q(λ ))
1
2 . (11)

Therefore, the minimization of J(.) admits a solution in the space of admissible functional of λ obtained by completion
for the semi-norm (11).

Actually, this is a norm. Indeed if Q(λ ) = 0, then uλ
D = uλ

N = uλ in Ω+. From (9b) we have uλ −δ t∆uλ = 0 in Ω+, and
uλ = 0 in Γ +. Moreover, from (10b) we obtain ∇uλ · ν = 0 on Γ + . Thus by the continuation theorem it follows that
uλ = 0 in Ω+. Consequently, λ = 0 which leads to the conclusion that (11) is a norm.

Remark. The inverse problem (P+) is formulated into a minimization problem:
Find λ ∈ H

1
2 (Γi) such that,

J̃(λ ) = inf
λ∈H

1
2 (Γi)

J(λ ). (12)

where J(.) is the energy-type error functional. This functional has been already introduced for data completion in the
framework of Laplace equation [3,5].

The approach that we follow consists in solving an interfacial equation arising from the optimality conditions of (12)
instead of finding the minimizer of J using classical descent gradient algorithms. In fact, we have the following result

Theorem 2. Let ( f ,g) be a compatible data, then the minimum of J is reached when

uD =uN + c on Γi,

∇uD ·ν =∇uN ·ν on Γi,
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Above, c is a constant.

Proof. The first condition is follows directly by choosing λ = uD = uN . For the second one, we compute the first derivative
of J over λ (= uD or uN), using the boundary conditions of equation (4) and (5), we have

∇J.λ =
∫

Ω+
(∇uλ

D −∇uλ
N)(∇uD −∇uN)+

1
δ t

∫
Ω+

(uλ
D −uλ

N)(uD −uN)

=
∫

Ω+
(∇uD −∇uN) ·∇uλ

D − (∇uD −∇uN) ·∇uλ
N

+
1
δ t

∫
Ω+

(uD −uN)uλ
D − (uD −uN)uλ

N

=−
∫

Ω+
∆(uD −uN)uλ

D +
∫

∂Ω+
uλ

D∇(uD −uN) ·ν

+
∫

Ω+
∆uλ

N(uD −uN)−
∫

∂Ω+
(uD −uN)∇uλ

N ·ν

+
1
δ t

∫
Ω+

(uD −uN)uλ
D − (uD −uN)uλ

N .

Since
∇uλ

N .ν = 0 on Γ +
c , uD −uN = 0 on Γi and uλ

D = 0 on Γ +
c .

We obtain:
∇J ·λ =

∫
Γi

uλ
D∇(uD −uN) ·ν =

∫
Γi

λ∇(uD −uN) ·ν .

From the first order optimal condition, we obtain ∇J ·λ = 0. Then, we have:

∇uD ·ν −∇uN ·ν = 0 on Γi. (13)

Remark 3 By a decomposition (8), the equation (13) is equivalent to

∇(u0
D −u0

N) ·ν =−∇(uλ
D −uλ

N) ·ν on Γi. (14)

4.4 Stecklov-Poincaré operator

To solve the interface equations (4) and (5), we follow the techniques of domain decomposition using the the Stecklov-
Poincaré operator. Then, the interface conditions (14) can be equivalently expressed as the following linear system

Sλ = χ,

where
χ =−∇(u0

D −u0
N) ·ν ,

and
Sλ = SDλ −SNλ = ∇uλ

D ·ν −∇uλ
N ·ν ,

where
SD : H

1
2 (Γi) → H− 1

2 (Γi)

λ 7→ ∇uλ
D ·ν ,

SN : H
1
2 (Γi) → H− 1

2 (Γi)

λ 7→ ∇uλ
N ·ν.
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SD and SN are so-called Stecklov-Poincaré operators. These operators are widely used in the domain decomposition
community (see [6,10,27]). There are several ways to solve this linear system of equations. Here, we use the following
iterative preconditioned gradient algorithm:λ0 is given,

λk+1 = λk +ρ(S−1
D (Sλk −χ), k ≥ 0,

where ρ is a coefficient of relaxation and SD is the preconditioning operator. Thus, each iteration requires to compute Sλk

by solving problems (4), (5) and the system Sµ = Sλk. This is achieved by solving the following problem:
wn+1 −δ t∆wn+1 = wn in Ω+,

wn+1 = 0 on Γ +
c ,

wn+1 = Sλk on Γi,

(15)

where wn is the solution of the problem (15) in the previous step. We initialize by w0 = 0. Then µ = wn+1 on Γi at time
tn+1.
These three problems (4), (5) and (15) must be discretized in space for numerical simulations by a finite element method.

5 Numerical results

In this work, all the PDEs are solved with the finite-element open source software FreeFem++ [20].

5.1 Single crack identification

We consider a computational domain Ω which is a 2D annular section with radius r1 = 1 and r2 = 3. Let Γ +
c , Γ −

c and Γi

be the outer circle, the inner one, and the circle of radius r3 = 2, respectively ( see Fig. 5). The crack in this case is given
in polar coordinate by

σ1 = {r = 2,
π
3
≤ θ ≤ 13π

30
}. (16)

We note by Ω+ the sub-domain limited by Γ +
c and Γi, Ω− the domain with boundary Γ −

c and Γi. We consider the mesh
where we have set: 300 nodes on Γ +

c , 100 nodes on Γ −
c , 210 on Γi \σ1 and 20 nodes on σ1. For the discretization of the

time derivative, we consider a final time T = 10 and a time step δ t = 1. The stopping criteria in each problem is J(λ )≤ ξ ,
where ξ is a given tolerance level and J the energy-type error functional defined in (7). In this test, we take the case of
ξ = 10−2. A synthetic data are generated by solving the two following forward problems

∂tu+−∆u+ = 0 in Ω+× [0,T ],

∇u+ ·ν = G on Γ +
c × [0,T ],

u+ = F on Γ +
c × [0,T ],

u+(x,0) = 0 in Ω+.

(P1)


∂tu−−∆u− = 0 in Ω−× [0,T ],

∇u− ·ν = G on Γ −
c × [0,T ],

u− = F on Γ −
c × [0,T ],

u−(x,0) = 0 in Ω−,

(P2)
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Fig. 5: Computational domain Ω with single crack.

where F = x+ y and G = t.

In Fig.6, we display the exact Dirichlet data uexact |Γi and Dirichlet data u+|Γi and u−|Γi at different time steps, i.e.,
t = 2,4,6 and 8, respectively. We notice that we have a peak in the curves which corresponds the crack position. Over
time iterations, we can see the efficiency of the proposed method and the crack position is progressively better
approximated. Indeed, the height of the peak is being more important which give more accuracy in the identification of
the crack position. In Fig. 7, we display the difference between the two solutions u+ and u− on Γi at t = 2,4,6,8. As
expected, the crack is located where the jump between the two solutions is very important.

5.2 Multiple crack zone identification

5.2.1 Cracks with same size

In this case, we consider the same computational domain as in the previous example and we consider two cracks with
same size l (l = π

10 ≃ 0.31) (see Fig.8). The crack σ1, which is defined in (16) and a second crack σ2 which is given in
polar coordinate by:

σ2 = {r = 2,
3π
2

≤ θ ≤ 8π
5
}. (17)

In Fig. 9, we present numerical result for the case when the two cracks have same sizes for different time. We present
the comparison between the exact and the reconstructed solution on Γi for the Dirichlet data for the two Cauchy problems
(P1) and (P2). We believe that there is merit in the proposed procedure. In Fig. 10, we display the difference between the
solutions u+ and u− on Γi at different time steps, i.e, t = 2,4,6,8. We obtain two peacks at two different positions which
correspond to the position of cracks.

5.2.2 cracks of different size

Now, we consider the same computational domain as in the previous example and we consider two cracks σ3 and σ4 with
different size respectively l3 = d and l4 = 2d with d = 0.2.
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Fig. 6: Single crack: Reconstruction of the Dirichlet date u+, u− and uexact on Γi for a test case with a) T=2 b) T=4 c) T=6
d) T=8, ξ = 10−2, δ t = 1.

The cracks σ3 and σ4 is defined respectively in polar coordinate by :

σ3 = {r = 2,
π
4
≤ θ ≤ π

4
+d},

σ4 = {r = 2,
3π
2

−2d ≤ θ ≤ 3π
2
}.

In Figs. 11 and 12, the reconstruction are given on Γi for different time step t = 2,4,6,8 for the case when the two cracks
are different sizes. Having cracks zones of different sizes does not change the results.

5.3 Variation of the parameters

In the general theory of regularization of inverse problems, it is preferable to adjust the different parameters (time step,
regularization parameter, mesh size, stopping criterion) in the model in order to achieve a numerical approximation of the
solution of the inverse problem with high accuracy. In addition, the numerical solution may be very sensitive with respect
to one or more of these parameters. Then, there is a careful interplay between the various parameters and so it’s necessary
to change one of them by keeping the others fixed to thereby see its influence on the obtained numerical reconstruction.
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Fig. 7: Single crack: Reconstructed jump [[u]] = u+ − u− on Γi for a test case with t=2 a) , b) t=4, c) t=6 and d) t=8,
ξ = 10−2, δ t = 1.

Fig. 8: Computational domain Ω with multiple cracks .
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Fig. 9: Cracks with same size: Reconstruction of the Dirichlet date u+, u− and uexact on Γi for a test case with a) t=2 b)
t=4 c) t=6 d) t=8, ξ = 10−2, δ t = 1.

5.3.1 Changing the mesh size

In this step, we return for the test of single crack and we fix the following parameters : δ t = 1, tolerance ξ = 10−2,
and t = 2 and we address the stability of the jump with respect to the mesh size. To begin with, changing the mesh size
influences the number of iterations needed before reaching the chosen stopping criteria. The dependence of the number
of iterations on the mesh size are given in table 1 from which it can be seen that increasing the mesh size decreases
the number of iterations, slightly. More mesh points make the discretized problem to be closer to the original Cauchy
problem, and in particular more numerically unstable, forcing an earlier termination of the iterations. The accuracy of
the reconstructions are somewhat improved as illustrated in Fig. 13. In particular, the reconstruction of the jump goes up
several factors when increasing the mesh size. This is some evidence in the previous examples that the numerical results
can be improved by elaborating on the parameters.

5.3.2 Variation of the regularization parameter γ

We consider now, in the case of single crack, the mesh size fixed and composed of 100 nodes on Γ −
c , 300 on nodes Γ +

c

and 230 nodes on Γi. We present a problem (P1) and (P2) with different regularizing parameter γ . We note γ1 for problem
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Fig. 10: Cracks with same size: Reconstructed jump [[u]] = u+−u− on Γi for a test case with t=2 a) , b) t=4, c) t=6 and d)
t=8, ξ = 10−2, δ t = 1.

Number Number Number Number Total
of nodes of nodes of nodes of nodes number of Figures

on Γc1 on Γc2 on Γi \σ on σ iterations
25 70 50 3 943 Fig.13.a)
50 150 105 5 508 Fig.13.b)
100 300 210 20 168 Fig.13.c)
200 500 300 20 171 Fig.13.d)

Table 1: Number of iteration as a function of the mesh size.

(P1) and γ2 for problem (P2). The number of iterations needed are given in Table (2). Rather than producing more figures,
we report here without illustrations that the reconstructions are sensitive with respect to the regularizing parameter. In
our case, choosing the parameter such that 0.1 ≤ γ1 ≤ 1 and 0.1 ≤ γ2 ≤ 0.8 gives stable results improving with smaller
values. A common ad-hoc way to choose the regularizing parameter is to compute the numerical solution for a range of
values of this parameter decreasing to zero. Once unstable (oscillating) numerical results are produced, we know that the
regularizing parameter has been chosen too small and no further improvement in terms of accuracy can be achieved.

c⃝ 2017 BISKA Bilisim Technology



NTMSCI 5, No. 3, 208-226 (2017) / www.ntmsci.com 222

Fig. 11: Cracks of different size: Reconstruction of the Dirichlet date on Γi u+, u− and uexact for a test case with a) t=2 b)
t=4 c) t=6 d) t=8, ξ = 10−2, δ t = 1.

γ1 1 0.5 0.3 0.1
γ2 0.8 0.4 0.3 0.1

Number of iterations 168 334 465 1395

Table 2: Number of iterations as a function of the regularization γ .

5.4 Singular test case with noise

To test the robustness of our procedure, we consider in the test case of singular crack the following noise of the boundary
data f :

f = f +ψε ,

where ψ denotes the noise level relative to ∥ f∥L2(Γc)
, and ε is a random function generated by the Freefeem++.
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Fig. 12: Cracks of different size: Reconstructed jump [[u]] = u+−u− on Γi for a test case with t=2 a) , b) t=4, c) t=6 and
d) t=8, ξ = 10−2, δ t = 1.

Fig. 14: Reconstructed jump with noisy data for the singular test case on Γi at t=10.
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Fig. 13: Reconstructed jump [[u]] = u+−u− across Γi with different types of mesh, ξ = 10−2, δ t = 1.

In Fig.14, we illustrate the results for various levels of noise at time t = 10 where we plot the jump on Γi. The recovered
jump with 1% is very close to the jump with 0%. When the boundary data contains a higher level of noise i.e 2% and 3%,
the relative position of crack becomes less precise and finally the algorithm detects an incorrect number of cracks.

6 Conclusion

In this work, we have investigated the problem of identification of cracks. We proposed a strategy which transforms the
problem into an alternative one which consists in solving two Cauchy problems. After that, we solved these Cauchy
problems through the minimization of energy error functional.
The minimization of these functional leads to interfacial problems, which are solved by an iterative preconditioned
gradient algorithm. Each gradient iteration requires to solve for each problem three well-posed problems. Numerical
experiments illustrate the efficiency of the proposed method. The Recovered solutions are very close to the exact
synthetic one, even for a singular test case. Moreover, the method does not require any regularization tool. Comparing
the proposed method with classical least-square approaches and with other methods based on an energy norm would be
an interesting future direction of investigation.
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