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Abstract: This work, Bernoulli wavelet method is formed to solve noekr fuzzy Volterra-Fredholm integral equations. Berfioul
wavelets have been Created by dilation and translation oid#li polynomials. First we introduce properties of Beulli wavelets
and Bernoulli polynomials, and then we used it to transfdimintegral equations to the system of algebraic equatidescompared
the result of the proposed method with the exact solutiohéavghe convergence and advantages of the new method. Tthis igst by
present wavelet method are compared with that of by collmcamethod based on radial basis functions method. Firthiynhumerical
examples explain the accuracy of this method.
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1 Introduction

The study of fuzzy integral equations begins with the ingegions of Kelva [1] and Seikkala [2] for the fuzzy Volterra
integral equation that is equivalent to the initial valuelgem for first order fuzzy differential equations, where th
Banach'’s fixed point theorem and the method of successiveripmations are applied in the problem of the existence
and uniqueness the solutions. The main problems that arigezzy integral equations are: the existence and unicgsene
of the solution, and the construction of numerical methodsproximate it.

Many researchers have focused their interest on this fieldpablished many articles which are available in literature
Many analytical methods like Adomian decomposition metifisl] homotopy analysis method [6], and homotopy
perturbation method [7] have been used to solve fuzzy iategyuations. There are available many numerical techeique
to solve fuzzy integral equations. The method of succesgipeoximations [8,9], quadrature rule [10], Nystrom metho
[11], Lagrange interpolation [12], Bernstein polynomifl8], Chebyshev interpolation [14], Legendre wavelet rodth
[15], sinc function [16], residual minimization method [17uzzy transforms method [18], and Galerkin method [19]
have been applied to solve fuzzy integral equations numlériave introduce fuzzy linear Volterra-Fredholm intelgra
equation is introduced.

The rest of the paper has been organized as follows: In se2tiove present some preliminaries and notations useful for
fuzzy integral equations. In section 3, we discuss the ptigseof Bernoulli wavelets and function approximation. In
section 4, we establish the method for solving Volterradfem integral equation. Section 5 deals with the illusteat
example which show the efficiency of the presented method.
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2 Preliminaries of fuzzy integral equation

Definition 1. (See Ref. [20].) A fuzzy number u is represented by an orgeeadf functiongu(r),u(r)); 0 <r < 1 which
satisfying the following properties.

(I) u(r) is a bounded monotonic increasing left continuous function
(1) u(r) is a bounded monotonic decreasing left continuous function
() u(r) <a(r),0<r<1.
For arbitrary u(r) = (u(r), u(r)),v(r) = (v(r),v(r)), and k> 0 we define additiorfu + v) and scalar multiplication by k
as.

(@) (U+v)(r) =u(r)+y(r)
(b) (u+V)(r) =u(r) +v(r)
(c) ku(r) = ku(r),ku(r) = ku(r).

Remark(See Ref. [21].) If the fuzzy functiofi(t) is continuous in the metriD, its definite integral exists. Also

b b
/ftrdt :/
a a

b b
(/f(t,r)dt) = / f(t;r)dt
a a
Definition 2. ([22]) A fuzzy number is a function such as u R [0;1] satisfying the following properties.
(i) uis normal, i.e3Xp € R with uxg) = 1,

(i) uis aconvexfuzzy seti.gx+ (1—A)y) > min{u(x),u(y)}vx,y € R,A €[0,1],

(iii) uis upper semi-continuous on R,

(iv) {xeR:u(x)> 0} is compact, where A denotes the closure of A.

The set of all fuzzy real numbers is denoted by E. Obviously{ERHere RC E is R= {xx : x isusual real numbe. For
0<r<1,itis[u]y = {xe Ru(x) >r} and[u]p = {x € Riu(x) > 0}. Then it is well-known that for any« [0, 1], [u], is a
bounded closed interval. Fér= ¥V € E and , andA € Rwhere sunii+ ¥V and the means the conventional addition of two
intervals (subsets) of [u]; = {A x: x € [u];} means the conventional product between a scalar and a sabBet

Definition 3. ([22]) Supposdiis a fuzzy number andg [0, 1]. Then the r-cut representation dfis the pair of functions
L(r) and R(r) both form [0;1] to R defined respectively, by
L(r) =inf{(x|x) € [u]r};ifr € (0;1] =inf{(x|x) € supp(d)};ifr =0
and
R(r) =sup{{x|x) € [u]; };ifr € (0;1 =sup{{x|x) €supp(d)};ifr =

Definition 4. ([22]) A fuzzy number vectoX = (%, ......% )t given by = [%(r), .....x(r)], 1<i<n 1<r<nis
called the solution of Volterra-Fredholm integral equatiib

n
= 2 =h.

HM:

n R
= > a@xXj=h.
=1

Definition 5.Let f: R— E be a fuzzy function (whereE is a subset of a Banach spacd) a. The derivative'(to) =

of f ata point is defined by
f'(to) = lim w7

h—0+
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provided that this limit taken with respect to the metric &ists and t> 0 be sufficiently small parameter. The

elements(to + h) and f(tp) in the above equation are in Banach space-E|[0, 1] x C[0, 1].

Thus, if f(to + h) = (a,a) and f(tg) = (b,b), then f(to+h) — f(to) = (a—b, a—b).

Clearly [f(to+ h) — f(to)]/h may not be a fuzzy number for all h. However, if it approachés) (in B) and f (to) is
also a fuzzy number (in E) this number is the fuzzy derivatifef(t)at to.In this case, if f= (f,f)

f'(tg) = (_f'(to),F(to)) Where(_f/,F)are classic derivative off, f), respectively andte R.

3 Wavelets and Bernoulli wavelets

Wavelets constitute a family of functions constructed frdilation and translation of a single function called mother
wavelet. When the dilation paramegerand the translation parametevary continuously, we have the following family

. -1
of continuous wavelets ag. p(t) = [a| Z lp(t%b),

abeR a#0 (1)

If we restrict the parameteemndbto discrete values as= ay K, b = nbpag ¥, ag > 1,bg > 0 andn andk are positive
k
integers, we have the following family of discrete wavel@lgn(t) = |ao|2 ¢(agkt — nhy),

nkez" (2)
where n(t) forms a wavelet basis fa?(R). In particular, wherag = 2,bp = 1, theng n(t) form an orthonormal basis.

Bernoulli waveletsynm(t) = @(k,n,m;t) have four arguments, whene= 1,2,....21 ke z*.mis the order of
Bernoulli polynomials antis normalized time. They are defined on the interval [0,10143.[

k-1 ~
272 B2t —n+1) =L <t < 0
Wn,m(t) — Bm( ) + ) k-1 = k-1 (3)
0, otherewise
with
. 1, m=0
Bnt) = § ——t——Bnlt), M>0 (4)
ot %2m

wherem=0,1,...M—1anch=1,2,..., 21,

1

_1ym-1 2
e

ish=(n—1)2- kD,

The coefficient is for the orthonormality, the dilation parameteis= 2-(~1 and translation parameter

Here Bm(t) are the well-knowmi" order Bernoulli polynomials which are defined on the intéf@a 1], and can be
determined with the aid of the following explicit formulaqJL

Bun(t) = i (:“) it 5)
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where are;. i =0,1,...,m are Bernoulli numbers.

The first four such polynomials, respectively, @t) =1, B1(t) =t — 3, Bo(t) =t2—t+ 3, Bs(t) =t3— 3t2 + 1t.

Bernoulli polynomials satisfy the following formula [24].

1

| Blt) Byt = (-1)

0

¢ min!
: 1m Brinmn> 1. (6)

3.1 Properties of Bernoulli's polynomial

Properties of Bernoulli polynomials are given as follow4][2

(1) Bm(1—t) = (—1)"Bm(t),me Z*
(2) Bh(t) = MBr_1(t),me Z*

1
(@) [ B0 Br(0)dt = (~1)™ s amen(t) mn > 1

(4) [ 1Bm(®)]dt < 16 ™ Gty (1), > 0.
0

(2m™"
X
— B —Bm
(5) J Bm(t)dt = 100 fna(@)

(6) SURc(o,1] Bem(t)] = |at2m| -
(7) SURc(o1) [Bama(t)] < 25 |aom| -

3.2 Properties of Bernoulli number

The sequence of Bernoulli numbeigy) .y satisfying the following properties [24],

(1) azmi1="0,02m = Bom(1).
(2) Bm(1/2) = (21" M- 1) o,
@) tm= 25 (ML

m+-1 o k

Q.

3.3 Function approximation by using Bernoulli wavelet nogth

Any functiony(t)which is square integrable in the intery@J 1) can be expanded &Bernoulli wavelet metho(BWM) as.

k-1m—1

Yyt =3 5 Yambum(t) =BT ()Y (7)

n=1m=0

_(y(®),bnm(t))
V= (Pnm(t), bnm(t)) ®)

In (8), (., .) denotes the inner product. If the infinite seiiie (7) is truncated, then (7) can be rewritten as

T
Y = [yl,anl,la "'7yl,|\/|flay2,0) "'7y2,|\/|71) "'7y2k*1,05 "'7y2k*1’M71]

B(t) = [bl’o(t), b1ai(t),..., bl,M—l(t); boo(t),...., bz’M,l(t), s bzkflyo(t), ey bzkfl!Mfl(t)]T.
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Therefore we have
YT < B(t),B(t) >=< u(t),B(t) >

then
Y=D1<u(t),B(t) >,
where
D;0---0
1 0D, --- 0
D =< Bt >:/B ).BT(t)
0 :
00---D,,
Then by using (7Pi(i = 1,2,...,M) is defined as follows.
P
Oniir= [ Binl@ =i+ B2 i+ Ddx= 5 1/B.n )Bja(t)dt
z(lk 11)

We can also approximate the functigr,t) € L[0, 1] as follows:
k(x,t) ~ BT (x) K B(t),
whereK is an ¥~1. M matrix that we can obtain as follows.

K=D"1<B(x) <k(xt),B(t) >>D?

3.4 Integration of Bernoulli wavelet functions

)

(10)

(11)

(12)

In Bernoulli wavelet functions analysis for a dynamic systall functions need to be transformed into BWM functions.
The integration of BWM functions should be expandable intdN8 functions with the coefficient matrix P. These ideas

come from papers of Chen et al. [25].

We can approximate function with this base. For exampl&fer2 andM = 2.

1 1
wl’o(t):{\/é, 0<x<3 ‘-IJZ,O(X):{\/Z 3<x<1

0, otherewise’ 0, otherewise

VB(4t—1), 0<x<3i ) VB(4t-3), 1<x<1
Y1109 = {O otherewise “taa¥) = {O, otherewisé
Wasen) (1) = [Wro(t), Yao(t), Ya(t), P (1)
Wiax1)(t) = [Wao(t), Waolt), Yna(t), Yas ()]

t
/B(zkfl-M)(T)d(T) ~ Po1mxok-1.m Biae1w) (1), t €0, 1),
0

(13)
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where the #-1. M-square matri is called the operational matrix of integration, ap&k—l,M) (t) is defined in Eq. (3). A
subscript #1.M x 2<-1. M of P denotes its dimension afiis the operational matrix of integration and can be obtained
as.

0.25000 049999999 014433756 %3554 1030
b o 0.24999999 0 044337567
@ Imx-1my | —0.1443375-3.535533910 30 —1.02062 10 1° —6.909032 1030
0 —0.14433756717 O 02062071010

The integration of the cross product of two BWM function \egstcan be obtained as,

LO---0
1 ; OL.-.-0
D:/B(zkfl-m)(t)B (21w (D) d(t) = . (14)
S RETIREE e
0 0---L
whereL is an ¥~1- M diagonal matrix given by
10---0
0 1---0
D= _ (15)
00---1

Egs. (7-15) are very important for solving Volterra- Frebthdntegral equation of the second kind problems, because t
D and P matrix can increase the calculating speed, as wedvastlse memory storage.

4 Solution of Volterra- Fredholm integral equation via Bernoulli wavelet method

Consider the following Volterra- Fredholm integral eqoatbf the form:

YO = F(x) + / ke (3, ) y(t) dt + / y(t)dt (16)
0

Eq. (9.2), in crisp sense, converted into a system as

y(x,r) = f(xr) +flkl(x,t)y(t,r)dt+}(y(t,r)dt
LT a7)

y(x,r) = f(x,r)+fk1(x,t)y(t,r)dt+_?)7(t,r)dt
0

where

(© 2017 BISKA Bilisim Technology
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and
_ [0yt kaxt) =0
kl(X,t)Y(t,r) = { ky ( )X( , )klj&X t) <0

Approximate/(x,r), y(x,r) ki (x,t), f(x,r), f(x,r) andky (x,t) as follows.

Ky (X, t) ~ BT(X) KiB(t), y(x.r)=~BT(x)Y1B(r),
yix,r) ~BT(X)Y2B(r), f(x,r)~ BT (x)FB(r), (18)
f(xr) ~ BT () F2B(r),

with substituting above equations into in Eq. (17)

1 X
BT (x)Y1B(r) = BT (x) FlB(r)+/BT(x) K1B(t) BT(t)YlB(r)dtJr/B(t)YlT B(r)dt
0

1 X
BT (X)Y2B(r) = BT(x)FgB(r)+/BT(x) K1 B(t) BT (1) Y, B(r)dt+/B(t)Y2T B(r)dt (19)
0 0

1
BT (X)Y1B(r) = BT (x) F1 B(r) + BT (x) Kl/ B(t) BT (1) Y2 B(r)dt+VY," /B(t) B(r)dt
) .

1
BT (X)Y2B(r) = BT (X) F2B(r) + BT (x) Kl/ B(t) BT (t)YaB(r) dt+Y," / B(t) B(r)dt. (20)
/ .

Applying Egs. (10), (12) and (20) to Eq. (20) and Eq.(20) lmees

B"(X)Yo =BT (X)F1 +BT(x)Ki1DY: +Yi"PB(x)
BT (X)Y2 =BT (X)F2 + BT (x)KiDY2 +Y>"PB(x). (21)

In order to findY we collocate Eq. (21) iM - 2€ nodal points of Newton-Cotes [26] as

2i—

=M

(22)
From Egs. (21) we have a systemMf 2Klinear equations anifl - 2 unknowns. After solving above linear system, we
can achieve the unknown vect¥rsThe required approximated solutigfx) for Volterra—Fredholm integral Eg. (16) can
be obtained by using Eqgs.(21) as follows.

y(x,r) = f(x,r)+BT(x)KiDY1 + Y1 PB(X) (23)

yix,r) = f(x,r)+BT(X)K1DYo+ Yo" PB(X) (24)

5 Illustrative numerical example

We applied the presented schemes to the following VoltErestholm Integral equation of second kind. For this purpose
we consider the following example.

(© 2017 BISKA Bilisim Technology
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Consider the following linear Volterra- Fredholm Integegjuation

1 X
y(x) = f(x)+/(x+t)y(t)dt+/y(t)dt
0 0

fx,r) =[f(t,r), f(t,r)]=x2— 1e

1
i -7~ 5 +[09+01r1.25- 0251 - [36+04r,5-1]x (25)

If we solve (25) fory(x)directly, the analytic solution can be shown to be

y(x.r) = [y(x,1),y(x,1)] = x*+[1.8+0.2r,25—0.5r], re[0,1], xe€ [0,1].
The above problem has been solved by Bernoulli wavelet ndeffilee comparison between the BWM solution and the
analytic solution fox € [0,1)andt € [0,1) is shown in Fig. 1,2 foM = 4 andk = 3, then the results are compared with that
of obtained by collocation method based on radial basistioime method. We take=0,0.2,0.4,0.6,0.8,1and r =0 and
calculate the absolute errors|ag = |y(x,r) — y*(x,r)|. This comparison is presented in the Table 1. The approiomat
solutions ofy(x,r) andy(x,r) forr =0, 0.1,0.3,0.7, 0.9 are shown in Fig.1 and Fig.2. Better approximation is etguec
by increasing the order of the Bernoulli polynomials.

Table 1: Comparison of numerical solutions fgix,r),y(x,r) in Example 1 at r =0 in [23].

| Absolute error using BWM Absolute error using collocation method based
( proposed method) on radial basis functions
0 Y- ¥ =¥ Y-y =¥
0 0 0 0.10 0.82
0.2 0 0 0.44 0.86
0.4 0 9.6x10°° 0.63 0.99
0.6 1x10°° 7.4¢10°° 0.72 0.94
0.8 3.2¢10°8 5.3¢+10°8 0.40 0.79
1 4.5¢10°° 5.1x10 % 0.70 0.85
¥i5)
28
. Exact
£+ * =01
o =03
" =07
79 x =09

=
<
=
I
=1
[
=
e

"=
in
[
o
=
o
P
=

=

Fig. 1: Approximate solution o/(x,r) forr = 0.1,0.3,0.7,0.90f Example 1.
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¥(x)
3.4+

3.0

exact

* O W X
1
=1
[

=
=
=
2
=
i
=
P
=
i
=
N
=
=
w
=
o

Fig. 2: Approximate solution of/(x,r) forr = 0.1, 0.3, 0.7, 0.90f Example 1.

6 Conclusion

In this paper, we proposed an approximation technigue tedolzzy linear Volterra-Fredholm integral equations. The
method is based upon reducing the system into a set of algedsyaations. The generation of this system needs just
sampling of functions multiplication and addition of ma&$ and needs no integration. The matrix D and P are sparse;
hence are much faster than other functions and reduces ti¢i@E and the computer memory, at the same time keeping
the accuracy of the solution. The numerical example supgbis claim. The numerical results obtained by present
method is compared with the results obtained by a combinaticollocation method and radial basis functions(RBFs)
method. From the above table, it manifests that the presemidsilli wavelet method gives more accurate results than
a combination of collocation method and radial basis fumgi(RBFs) results. Additionally, the computational tinfe o
present method is much smaller than that of obtained by a i@tbn of collocation method and radial basis functions
(RBFs). Moreover, the absolute error improves by increatie order of the Bernoulli polynomials. lllustrative exale

is included to demonstrate the validity and applicabilitjhe proposed technique. This example also exhibits theracg

and efficiency of the present method.
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