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Abstract: This work, Bernoulli wavelet method is formed to solve nonlinear fuzzy Volterra-Fredholm integral equations. Bernoulli
wavelets have been Created by dilation and translation of Bernoulli polynomials. First we introduce properties of Bernoulli wavelets
and Bernoulli polynomials, and then we used it to transform the integral equations to the system of algebraic equations.We compared
the result of the proposed method with the exact solution to show the convergence and advantages of the new method. The results got by
present wavelet method are compared with that of by collocation method based on radial basis functions method. Finally,the numerical
examples explain the accuracy of this method.
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1 Introduction

The study of fuzzy integral equations begins with the investigations of Kelva [1] and Seikkala [2] for the fuzzy Volterra
integral equation that is equivalent to the initial value problem for first order fuzzy differential equations, where the
Banach’s fixed point theorem and the method of successive approximations are applied in the problem of the existence
and uniqueness the solutions. The main problems that arise for fuzzy integral equations are: the existence and uniqueness
of the solution, and the construction of numerical methods to approximate it.

Many researchers have focused their interest on this field and published many articles which are available in literature.
Many analytical methods like Adomian decomposition method[5], homotopy analysis method [6], and homotopy
perturbation method [7] have been used to solve fuzzy integral equations. There are available many numerical techniques
to solve fuzzy integral equations. The method of successiveapproximations [8,9], quadrature rule [10], Nystrom method
[11], Lagrange interpolation [12], Bernstein polynomials[13], Chebyshev interpolation [14], Legendre wavelet method
[15], sinc function [16], residual minimization method [17], fuzzy transforms method [18], and Galerkin method [19]
have been applied to solve fuzzy integral equations numerically. we introduce fuzzy linear Volterra-Fredholm integral
equation is introduced.

The rest of the paper has been organized as follows: In section 2, we present some preliminaries and notations useful for
fuzzy integral equations. In section 3, we discuss the properties of Bernoulli wavelets and function approximation. In
section 4, we establish the method for solving Volterra-Fredholm integral equation. Section 5 deals with the illustrative
example which show the efficiency of the presented method.
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2 Preliminaries of fuzzy integral equation

Definition 1. (See Ref. [20].) A fuzzy number u is represented by an orderedpair of functions(u(r), ū(r));0≤ r ≤ 1 which
satisfying the following properties.

(I) u(r) is a bounded monotonic increasing left continuous function.
(II) ū(r) is a bounded monotonic decreasing left continuous function.

(III) u(r)≤ ū(r),0≤ r ≤ 1.

For arbitrary u(r) = (u(r), ū(r)),v(r) = (v(r), v̄(r)), and k> 0 we define addition(u+ v) and scalar multiplication by k
as.

(a) (u+ v)(r) = u(r)+ v(r)

(b) (u+ v)(r) = ū(r)+ v̄(r)
(c) ku(r) = ku(r),ku(r) = kū(r).

Remark.(See Ref. [21].) If the fuzzy functionf (t) is continuous in the metricD, its definite integral exists. Also

(

b
∫

a

f (t; r)dt ) =

b
∫

a

f (t; r)dt,

(

b
∫

a

f (t, r)dt) =

b
∫

a

f̄ (t; r)dt.

Definition 2. ([22]) A fuzzy number is a function such as u : R→ [0;1] satisfying the following properties.

(i) u is normal, i.e.∃x0 ∈ R with u(x0) = 1,
(ii) u is a convex fuzzy set i.e. u(λ x+(1−λ )y)≥ min{u(x),u(y)}∀x,y∈ R,λ ∈ [0,1],
(iii) u is upper semi-continuous on R,
(iv) {x∈ R : u(x)> 0} is compact, where A denotes the closure of A.

The set of all fuzzy real numbers is denoted by E. Obviously R⊂ E. Here R⊂ E is R= {χx : χ isusual real number}. For
0< r ≤ 1, it is [u]r = {x∈ R;u(x)≥ r} and[u]0 = {x∈ R;u(x)≥ 0}. Then it is well-known that for any r∈ [0,1], [u]r , is a
bounded closed interval. For̃u= ṽ∈ E and , andλ ∈ Rwhere sum̃u+ ṽ and the means the conventional addition of two
intervals (subsets) ofλ [u]r = {λ x : x∈ [u]r} means the conventional product between a scalar and a subsetof R.

Definition 3. ([22]) Supposẽuis a fuzzy number and r∈ [0,1]. Then the r-cut representation ofũ is the pair of functions
L(r) and R(r) both form [0;1] to R defined respectively, by

L(r) = inf{〈x | x〉 ∈ [u]r}; i f r ∈ (0;1] = inf{〈x | x〉 ∈ sup p(ũ)}; i f r = 0

and
R(r) = sup{〈x | x〉 ∈ [u]r}; i f r ∈ (0;1] = sup{〈x | x〉 ∈ sup p(ũ)}; i f r = 0.

Definition 4. ([22]) A fuzzy number vector̃X = (x̃1 , ....., x̃n )
t given bỹxi = [ x̃i(r) , ....., x̄i(r)], 1 ≤ i ≤ n, 1 ≤ r ≤ n is

called the solution of Volterra-Fredholm integral equation if

n

∑
j=1

ai j x j =
n

∑
j=1

ai j x j = bi,
n

∑
j=1

ai j x j =
n

∑
j=1

ai j x j = bi .

Definition 5.Let f : R→ E be a fuzzy function (whereE is a subset of a Banach space) andt0 ∈ R. The derivative f
′
(t0) =

of f at a point t0 is defined by

f
′
(t0) = lim

h→0+

f (t0+h)− f (t0)
h

,
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provided that this limit taken with respect to the metric D, exists and h> 0 be sufficiently small parameter. The
elements f(t0+h) and f(t0) in the above equation are in Banach space B= C̄[0,1]×C̄[0,1].

Thus, if f(t0+h) = (ā,a) and f(t0) = (b, b̄), then f(t0+h)− f (t0) = (a−b, ā− b̄).

Clearly [ f (t0 + h)− f (t0)]/h may not be a fuzzy number for all h. However, if it approachesf
′
(t0) (in B) and f

′
(t0) is

also a fuzzy number (in E) this number is the fuzzy derivativeof f(t)at t0.In this case, if f= ( f , f )

f
′
(t0) = ( f

′
(t0), f ′(t0)) where( f

′
, f ′ )are classic derivative of( f , f ), respectively and t0 ∈ R.

3 Wavelets and Bernoulli wavelets

Wavelets constitute a family of functions constructed fromdilation and translation of a single function called mother
wavelet. When the dilation parametera and the translation parameterb vary continuously, we have the following family

of continuous wavelets asψa,b(t) = |a|−1
2 ψ( t−b

a ),

a,b ∈ R, a 6= 0 (1)

If we restrict the parametersaandbto discrete values asa= a0
−k, b= nb0a0

−k, a0 > 1,b0 > 0 andn andk are positive

integers, we have the following family of discrete wavelets: ψk,n(t) = |a0|
k
2 ψ(a0

kt −nb0),

n,k ∈ Z+ (2)

whereψk,n(t) forms a wavelet basis forL2(R). In particular, whena0 = 2,b0 = 1, thenψk,n(t) form an orthonormal basis.

Bernoulli waveletsψn,m(t) = ψ(k,n,m, t) have four arguments, wheren = 1,2, ...,2k−1,k ∈ Z+,m is the order of
Bernoulli polynomials andt is normalized time. They are defined on the interval [0,1) as [14].

ψn,m(t) =

{

2
k−1

2 β̃m(2k−1 t −n+1) n−1
2k−1 ≤ t < n

2k−1

0, otherewise
(3)

with

β̃m(t) =







1, m= 0
1

√

(−1)m−1(m!)2

(2m)! α2m

βm(t), m> 0 (4)

wherem= 0,1, ...,M−1 andn= 1,2, ..., 2k−1.

The coefficient 1
√

(−1)m−1(m!)2

(2m)! α2m

is for the orthonormality, the dilation parameter isa= 2−(k−1) and translation parameter

is b= (n− 1)2−(k−1).

Here βm(t)are the well-knownmth order Bernoulli polynomials which are defined on the interval [0, 1], and can be
determined with the aid of the following explicit formula [15].

βm(t) =
m

∑
i=0

(

m
i

)

αm−i t
i, (5)
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where areαi . i = 0,1, ...,m are Bernoulli numbers.

The first four such polynomials, respectively, areβ0(t) = 1, β1(t) = t − 1
2, β2(t) = t2− t+ 1

6, β3(t) = t3− 3
2t2+ 1

2t.

Bernoulli polynomials satisfy the following formula [24].

1
∫

0

βn(t)βm(t)dt = (−1)n−1 m! n!
(m+n)!

βm+nm,n≥ 1. (6)

3.1 Properties of Bernoulli’s polynomial

Properties of Bernoulli polynomials are given as follows [24].

(1) βm(1− t) = (−1)mβm(t),m∈ Z+

(2) β /
m(t) = mβm−1(t),m∈ Z+

(3)
1
∫

0
βm(t)βn(t)dt = (−1)m−1 m! n!

(m!+n!)αm+n(t),m,n≥ 1.

(4)
1
∫

0
|βm(t)|dt < 16 m!

(2π)m+1 αm+n(t),m≥ 0.

(5)
x
∫

a
βm(t)dt = βm+1(x)−βm+1(a)

m+1 .

(6) supt∈[0,1] |β2m(t)|= |α2m| .
(7) supt∈[0,1] |β2m+1(t)| ≤ 2m+1

4 |α2m| .

3.2 Properties of Bernoulli number

The sequence of Bernoulli numbers(αm)m∈Nsatisfying the following properties [24],

(1) α2m+1 = 0,α2m = β2m(1).
(2) βm(1/2) = (21−m−1)αm.

(3) αm =− 1
m+1

m−1
∑

k=0

(

m+1
k

)

αk.

3.3 Function approximation by using Bernoulli wavelet method

Any functiony(t)which is square integrable in the interval[0, 1) can be expanded ina Bernoulli wavelet method(BWM) as.

y(t) =
2k−1

∑
n=1

M−1

∑
m=0

yn,mbn,m(t) = BT(t)Y (7)

Y =
(y(t),bn,m(t))

(bn,m(t),bn,m(t))
(8)

In (8), (. , .) denotes the inner product. If the infinite series in (7) is truncated, then (7) can be rewritten as

Y = [y1,0,y1,1, ...,y1,M−1,y2,0, ...,y2,M−1, ...,y2k−1,0, ...,y2k−1,M−1]
T

B(t) = [b1,0(t),b1,1(t), ...,b1,M−1(t),b2,0(t), ....,b2,M−1(t), ...,b2k−1,0(t), ...,b2k−1,M−1(t)]
T .
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Therefore we have
YT < B(t),B(t)>=< u(t),B(t)>

then
Y = D−1 < u(t),B(t)>,

where

D =< B(t),B(t)>=

1
∫

0

B(t).BT(t)dt =













D1 0 · · · 0

0 D2 · · · 0

...
... 0

0 0 · · · D
M













. (9)

Then by using (7)Di(i = 1,2, ...,M) is defined as follows.

(Dn)i, j+1 =

i
2(k−1)
∫

i−1
2(k−1)

Bi,n(2
k−1t − i +1)B j ,n(2

k−1t − i +1)dx=
1

2k−1

1
∫

0

Bi,n(t)B j ,n(t)dt (10)

We can also approximate the functionk(x, t) ∈ L[0,1] as follows:

k(x, t)≈ BT(x)K B(t), (11)

whereK is an 2k−1 ·M matrix that we can obtain as follows.

K = D−1 < B(x)< k(x, t),B(t)>> D−1 (12)

3.4 Integration of Bernoulli wavelet functions

In Bernoulli wavelet functions analysis for a dynamic system, all functions need to be transformed into BWM functions.
The integration of BWM functions should be expandable into BWM functions with the coefficient matrix P. These ideas
come from papers of Chen et al. [25].

We can approximate function with this base. For example fork= 2 andM = 2.

ψ1,0(t) =

{√
2, 0≤ x< 1

2
0, otherewise

,ψ2,0(x) =

{√
2, 1

2 ≤ x< 1
0, otherewise

ψ1,1(x) =

{√
6(4t −1), 0≤ x< 1

2
0, otherewise

,ψ2,1(x) =

{√
6(4t −3) , 1

2 ≤ x< 1
0, otherewise

ψ(4×1)(t)≡ [ψ10(t),ψ20(t),ψ11(t),ψ21(t)]
T

ψ(4×1)(t)≡ [ψ10(t),ψ20(t),ψ11(t),ψ21(t)]
T

t
∫

0

B(2k−1·M)(τ)d(τ) ≈ P2k−1·M×2k−1·M B(2k−1·M)(t), t ∈ [0,1), (13)
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where the 2k−1 ·M-square matrixP is called the operational matrix of integration, andψ(2k−1·M)(t) is defined in Eq. (3). A
subscript 2k−1 ·M×2k−1 ·M of P denotes its dimension andP is the operational matrix of integration and can be obtained
as.

P
(2k−1·M)×(2k−1·M)

=











0.25000 0.49999999 0.14433756 3.53554·10−30

0 0.24999999 0 0.144337567
−0.1443375−3.5355339·10−30 −1.02062·10−10 −6.909032·10−30

0 −0.14433756717 0 1.0206207·10−10











The integration of the cross product of two BWM function vectors can be obtained as,

D =

1
∫

0

B(2k−1·M)(t)BT
(2k−1·M)(t) d(t)≈













L 0 · · · 0
0 L · · · 0

· · · · · · . . . · · ·
0 0 · · · L













(14)

whereL is an 2k−1 ·M diagonal matrix given by

D =













1 0 · · · 0
0 1 · · · 0

· · · · · · . . . · · ·
0 0 · · · 1













(15)

Eqs. (7-15) are very important for solving Volterra- Fredholm-Integral equation of the second kind problems, because the
D and P matrix can increase the calculating speed, as well as save the memory storage.

4 Solution of Volterra- Fredholm integral equation via Bernoulli wavelet method

Consider the following Volterra- Fredholm integral equation of the form:

y(x) = f (x)+

1
∫

0

k1(x, t)y(t)dt+

x
∫

0

y(t)dt (16)

wherey and f , are fuzzy functions. Let
y(x) = [y(x, r), ȳ(x, r)],

f (x) = [ f (x, r), f̄ (x, r)],

Eq. (9.2), in crisp sense, converted into a system as

y(x, r) = f (x, r)+
1
∫

0
k1(x, t)y(t, r)dt+

x
∫

0
y(t, r)dt

ȳ(x, r) = f̄ (x, r)+
1
∫

0
k1(x, t) ȳ(t, r)dt+

x
∫

0
ȳ(t, r)dt

(17)

where

k1(x, t)y(t, r) =

{

k1(x, t)y(t, r) k1(x, t)≥ 0
k1(x, t) ȳ(t, r) k1(x, t)< 0
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and

k1(x, t) ȳ(t, r) =

{

k1(x, t) ȳ(t, r) k1(x, t)≥ 0
k1(x, t)y(t, r) k1(x, t)< 0

Approximatey(x, r), ȳ(x, r),k1(x, t), f (x, r), f̄ (x, r) andk1(x, t) as follows.

k1(x, t)≈ BT(x)K1 B(t), y(x, r) ≈ BT(x)Y1B(r),

ȳ(x, r)≈ BT(x)Y2 B(r), f (x, r)≈ BT(x)F1B(r), (18)

f̄ (x, r)≈ BT(x)F2B(r),

with substituting above equations into in Eq. (17)

BT(x)Y1B(r) = BT(x)F1B(r)+

1
∫

0

BT(x)K1 B(t) BT(t)Y1B(r)dt+

x
∫

0

B(t)Y1
T B(r)dt

BT(x)Y2B(r) = BT(x)F2B(r)+

1
∫

0

BT(x)K1 B(t) BT(t)Y2B(r)dt+

x
∫

0

B(t)Y2
T B(r)dt (19)

BT(x)Y1B(r) = BT(x)F1B(r)+BT(x)K1

1
∫

0

B(t) BT(t)Y1B(r)dt+Y1
T

x
∫

0

B(t) B(r)dt

BT(x)Y2B(r) = BT(x)F2B(r)+BT(x)K1

1
∫

0

B(t) BT(t)Y2B(r)dt+Y2
T

x
∫

0

B(t) B(r)dt. (20)

Applying Eqs. (10), (12) and (20) to Eq. (20) and Eq.(20) becomes

BT(x)Y1 = BT(x)F1 +BT(x)K1DY1 +Y1
TPB(x)

BT(x)Y2 = BT(x)F2 +BT(x)K1DY2 +Y2
TPB(x). (21)

In order to findY we collocate Eq. (21) inM ·2k nodal points of Newton-Cotes [26] as

ti =
2i −1
M ·2k . (22)

From Eqs. (21) we have a system ofM ·2klinear equations andM ·2k unknowns. After solving above linear system, we
can achieve the unknown vectorsY. The required approximated solutiony(x) for Volterra–Fredholm integral Eq. (16) can
be obtained by using Eqs.(21) as follows.

y(x, r) = f (x, r)+BT(x)K1 DY1+Y1
T PB(x) (23)

ȳ(x, r) = f̄ (x, r)+BT(x)K1 DY2+Y2
T PB(x) (24)

5 Illustrative numerical example

We applied the presented schemes to the following Volterra-Fredholm Integral equation of second kind. For this purpose,
we consider the following example.
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Consider the following linear Volterra- Fredholm Integralequation

y(x) = f (x)+

1
∫

0

(x+ t)y(t)dt+

x
∫

0

y(t)dt

f (x, r) = [ f (t, r), f̄ (t, r)] = x2− 1
3

x3− 1
4
− x

3
+[0.9+0.1r,1.25−0.25r]− [3.6+0.4r,5− r]x. (25)

If we solve (25) fory(x)directly, the analytic solution can be shown to be

y(x, r) = [y(x, r), ȳ(x, r)] = x2+[1.8+0.2r,2.5−0.5r], r ∈ [0,1], x∈ [0,1].

The above problem has been solved by Bernoulli wavelet method. The comparison between the BWM solution and the
analytic solution forx∈ [0,1)andt ∈ [0,1) is shown in Fig. 1,2 forM = 4 andk= 3, then the results are compared with that
of obtained by collocation method based on radial basis functions method. We takex= 0,0.2,0.4,0.6,0.8,1 and r = 0 and
calculate the absolute errors as|er | = |y(x, r)− y∗(x, r)|. This comparison is presented in the Table 1. The approximation
solutions ofy(x, r) andȳ(x, r) for r = 0, 0.1, 0.3, 0.7, 0.9 are shown in Fig.1 and Fig.2. Better approximation is expected
by increasing the order of the Bernoulli polynomials.

Table 1: Comparison of numerical solutions fory(x, r), ȳ(x, r) in Example 1 at r =0 in [23].

x
Absolute error using BWM
( proposed method)

Absolute error using collocation method based
on radial basis functions

0
∣

∣ye− ya
∣

∣ |ȳe− ȳa|
∣

∣ye− ya
∣

∣ |ȳe− ȳa|
0 0 0 0.10 0.82

0.2 0 0 0.44 0.86
0.4 0 9.6∗10−9 0.63 0.99
0.6 1∗10−9 7.4∗10−9 0.72 0.94
0.8 3.2∗10−8 5.3∗10−8 0.40 0.79
1 4.5∗10−6 5.1∗10−6 0.70 0.85

 

 

Fig. 1: Approximate solution ofy(x, r) for r = 0.1,0.3,0.7,0.9of Example 1.
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Fig. 2: Approximate solution of ¯y(x, r) for r = 0.1, 0.3, 0.7, 0.9of Example 1.

6 Conclusion

In this paper, we proposed an approximation technique to solve fuzzy linear Volterra-Fredholm integral equations. The
method is based upon reducing the system into a set of algebraic equations. The generation of this system needs just
sampling of functions multiplication and addition of matrices and needs no integration. The matrix D and P are sparse;
hence are much faster than other functions and reduces the CPU time and the computer memory, at the same time keeping
the accuracy of the solution. The numerical example supports this claim. The numerical results obtained by present
method is compared with the results obtained by a combination of collocation method and radial basis functions(RBFs)
method. From the above table, it manifests that the present Bernoulli wavelet method gives more accurate results than
a combination of collocation method and radial basis functions (RBFs) results. Additionally, the computational time of
present method is much smaller than that of obtained by a combination of collocation method and radial basis functions
(RBFs). Moreover, the absolute error improves by increasing the order of the Bernoulli polynomials. Illustrative example
is included to demonstrate the validity and applicability of the proposed technique. This example also exhibits the accuracy
and efficiency of the present method.
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