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Abstract: This paper presents two methods for obtaining the solutionsto the nonlinear Korteweg-de Vries–Burgers (KdVB) equation.
The first is the method of lines (MOL). The second method is Adomian decomposition method (ADM). The numerical results of the
MOL are compared with the analytical results of the ADM. In order to show the reliability of the considered methods we havecompared
the obtained solutions with the exact ones. The results reveal that the both methods are effective and convenient for solving such types
of partial differential equations but the method of lines gives accurate results over the analytical method.
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1 Introduction

This paper is concerned with the initial-boundary value problem associated with the nonlinear dispersive and dissipative
wave which was formulated by Korteweg, de Vries and Burgers in the form

∂u
∂ t

+ µ u
∂u
∂x

−θ
∂ 2u
∂x2 + δ

∂ 3u
∂x3 = 0 (1)

whereµ , θ , δ are constant coefficients.

It is well known that many physical phenomena can be described by the Korteweg-de Vries–Burgers equation. Eq. (1)
can serve as a nonlinear wave model of a fluid in an elastic tube[1],of a liquid with small bubbles [2,] and turbulence
[3,4].The coefficientsθandδ in Eq. (1) represent the damping and the dispersion coefficients, respectively. We note that
Eq.(1) is non integrable.

Soliton solutions of the KdV equation are known since long time [5,6]. Many problems, however, involve not only
dispersion but also dissipation, and these are not governedby the KdV equation. More complicated problems are the
flow of liquids containing gas bubbles [7,8],and the propagation of waves in an elastic tube filled with a viscous fluid
[9,10]. Other cases regarded the governing evolution equation can be shown to be the so-called Korteweg-de
Vries–Burgers equation.

In particular, the travelling wave solution to the KdVB equation has been studied extensively. Johnson [11], Demiray
[12] and Antar and Demiray [13] derived KdVB equation as the governing evolution equation for waves propagating in
fluid-filled elastic or viscoelastic tubes in which the effects of dispersion, dissipation and nonlinearity are present.
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The KdVB equation is a one-dimension generalization of the model description of the density and velocity fields that
takes into account pressure forces as well as the viscosity and the dispersion. It may be a more flexible tool for physicists
than the Burgers equation. Several studies in the literature, employing a large variety of methods to derive explicit
solutions for KdVB equation (1).

2 The method of lines

The method of lines [14] is a well established numerical technique (or rather a semi analytical method) for the analysis
of transmission lines, waveguide[15-18]. The method of lines is regarded as a special finite difference method but more
effective with respect to accuracy and computational time than the regular finite difference method. It basically involves
discretising a given differential equation in one or two dimensions while using analytical solution in the remaining
direction. The MOL has the merits of both the finite difference method and analytical method, it does not yield spurious
modes nor have the problem of relative convergence. The MOL is generally recognized as a comprehensive and powerful
approach to the numerical solution of time-dependent partial differential equations (PDEs). This method usually
proceeds in two separate steps: first, approximating the spatial derivatives. Second, the resulting system of semi discrete
(discrete in space–continuous in time) ordinary differential equations (ODEs) is integrated in time. The essence of the
method of lines is a way of approximating PDEs by ODEs. Obviously, an advantage of the MOL is that one can use all
kinds of ODE solvers and techniques to solve the semi-discrete ODEs directly.

3 Solving the KdV-Burger equation using the MOL

Consider KdV-Burger equation (1) with the initial condition

u(x,0) = (
1
25

)(
25 c

v
−100v2δ +

θ 2

δ
+12v2δ sech2(vx)−

12
5

vθ tanh(x)) (2)

and the boundary conditions
u(a, t) = 0.98,u(b, t) = 0.02. (3)

The exact solution of this problem is given by

u(x, t) = ((
1
25

)(
25 c

v
−100v2δ +

θ 2

δ
)+12v2δ sech2(vx− ct)−

12
5

vθ tanh(vx− ct)) (4)

The solution domain of the KdV- Burger equation (1) is the rectangle a≤ x ≤ b , 0≤ t ≤ T.

Let us subdivide it into uniform rectangular meshes by the lines xi = ih (i = 0,1,2,3, . . . ..N) and the lines
t j = jk ( j = 1,2,3, . . . ..), We replace the partial derivatives depend on spatial variables ux, dissipation termuxx and
dispersion termuxxx in KdV-Burger equation (1) with known finite difference approximations at pointxi.

The solution of the method of lines using fourth order finite difference scheme forux ,uxx , anduxxx is denoted by MOLI,
however the solution using a second order finite difference scheme forux ,uxx anduxxx is denoted by MOLII.

The derivativeux in KdV-Burger equation (1) is computed by finite differencesscheme in two way

(1) second order approximationsux =
ui+1−ui−1

2h +O( h2).

(2) fourth order approximationsux =
ui−2−8ui−1+8ui+1−ui+2

12h + O( h4).

The derivativeuxx in KdV-Burgers equation (1) is computed by finite differences in two ways
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(1) second order approximationsuxx =
ui−1−2ui+ui+1

h2 + O( h2).

(2) fourth order approximationsuxx =
−ui−2+16ui−1−30 ui+16ui+1−ui+2

12h2 + O( h4).

The derivativeuxxx in KdV-Burgers equation (1) is computed by finite differences in two ways

(1) second order approximationsuxxx =
−ui−2+2ui−1−2ui+1+ui+2

2h3 + O( h2).

(2) fourth order approximationsuxxx =
ui−3−8ui−2+13ui−1−13ui+1+8ui+2−ui+3

8h3 +O( h4).

Applying the above finite difference schemes to Eq. (1) yields a system of ordinary differential equations for the unknown
ui as functions int as follows:

dui(t)
dt

= f (ui) , i = 1(1)N −1. (5)

Using the fourth order finite difference scheme forux ,uxx and uxxx (MOLI), we have

dui(t)
dt

= δ
(ui−3(t)−8ui−2(t)+13ui−1(t)−13ui+1(t)+8ui+2(t)− ui+3(t))

8h3

− ui (t)
ui−2(t)−8ui−1(t)+8ui+1(t)− ui+2(t)

12h

+θ
−ui−2+16ui−1−30ui +16ui+1− ui+2

12h2 , i = 1,2,3, ...,N −1.

And for the second order finite difference scheme bothux and uxxx (MOLII), we have

dui (t)
dt

=−δ
(−ui−2(t)+2ui−1(t)+2ui+1(t)+8ui+2(t))

2h3

+θ
ui−1−2ui+ ui+1

h2 − ui (t)
ui+1(t)− ui−1(t)

2h
, i = 1,2,3, ...,N −1.

Thus, we have the system of differential equations of one independent variable t. This system can be easily solved by
using fourth order Runge–Kutta scheme

Un+1 =Un +
∆ t(K1+2K2+2K3+K4)

6
, K1 = F (Un) ,

K2 = F

(

Un +
∆ t
2

K1

)

, K3 = F

(

Un +
∆ t
2

K2

)

, K4 = F (Un +∆ t K3) .

The computational domain is[−20,20]∗ [0,30].The computational results are listed in Tables 1. . . 5.

The results obtained using the method of lines have been compared with the exact solution as a plots of the solution and
the absolute error (AE) profiles of the KdV-Burgers equationwhereθ and δ are constants atc = 0.5,∆ t = 10−3,
v = θ

10δ , t ∈ [0,30].
We obtain the MOLI solutions of KdV–Burgers equation with higher accuracy than MOLII. The obtained results
demonstrate the reliability of the MOL and its wider applicability to nonlinear evolution equations.

4 Adomian decomposition method

Following the analysis of Adomian [Adomian, 1994] equation(1) can be rewritten in an operator form as the following:

L(u)+R(u)+N (u) = g(t) (6)
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Fig. 1: Comparison of MOL I (dotted line) and exact (solid line) solutions atN = 500,δ = 0.02,θ = 0.2,c = 0.5,v = θ
10δ

andt ∈ [0,30].
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Fig. 2: The absolute error between the exact solutiontu(x, t) and the (MOL I) solution for KdV-Burger equation for
t ∈ [0,30].
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whereL = ∂
∂ t is the operator of the highest-ordered derivatives with respect to t andR is the remainder of the linear

operator. The nonlinear term is represented byN (u). Thus we get

L(u) = g(t)−R(u)−N (u) (7)

The inverseL−1 is assumed an integral operator given by

L−1 =
∫ t

0
(.)dt. (8)

The operating with the operatorL−1 on both sides of Eq. (9) we have

u = f0+L−1(g(t)−R(u)−N (u)) (9)

where f0 is the solution of homogeneous equation

L(u) = 0. (10)

The integration constants involved in the solution of homogeneous equation (10) are to be determined by the initial or
boundary condition according as the problem is initial-value problem or boundary - value problem. The ADM assumes
that the unknown functionu(x, t) can be expressed by an infinite series of the form

u(x, t) =
∞

∑
n=0

un (x, t) (11)

and the nonlinear operatorF(u) can be decomposed by an infinite series of polynomials given by

F (u) =
∞

∑
n=0

An. (12)

whereun(x, t) will be determined recurrently, andAn are the so-called polynomials ofu0 , u1 ,u2, ...,un defined by

An =
1
n!

dn

dλ n [F(
∞

∑
i=0

λ i]
λ=0, n=0,1,2,3,...

. (13)

It is now well known in the literature that these polynomialscan be constructed for all classes of nonlinearity according
to algorithms set by Adomian [19,22].

5 Solution of KdV-Burger equation using ADM

In the following section, we discuss the solution of the KdV-Burger equation using ADM. Eq. (1) can be written in an
operator form:

Lu =−δ uxxx − u ux +θ uxx (14)

where the differential operator L is L =∂∂ t .
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Applying the inverse operatorL−1 on both sides of (14) and using the decomposition series (12)and (13) yield

sum∞
n=0un (x, t) = (

1
25

)(
25 c

v
−100v2δ +

θ 2

δ
+ v2δ sech2 (vx)−

12
5

v θ tanh(x))

+L−1 (−(
∞

∑
n=0

An)− δ (
∞

∑
n=0

un)
xxx

+θ (
∞

∑
n=0

un)
xx

whereAn are Adomian polynomials that represent the nonlinear termuux and given by

A0 = u0xu0

A1 = u0xu1+ u1xu0

A2 = u0xu2+ u1xu1+ u2xu0 (15)

A3 = u0xu3+ u1xu2+ u2x

A4 = u0xu4+ u1xu3+ u2xu2+ u3xu1+ u4xu0.

Other polynomials can be generated in a like manner. The firstfew components ofun (x, t) follows as

u0 (x) = f (x)

u1 (x, t) = L−1 (−A0+θu0xx− δu0xxx) (16)

u2 (x, t) = L−1 (−A1+θu1xx− δu1xxx)

u3 (x, t) = L−1 (−A2+θu2xx− δu2xxx)

The scheme in (16) can easily determine the componentsun (x, t) ,n ≥ 0. So it is possible to calculate more components
in the decomposition series to enhance the approximation. The resulting components using initial condition (2) andδ =

0.02,θ = 0.2,c = 0.5, v = θ
10δ .

u0 (x, t) = u(x,0) = (
1
25

)(
25 c

v
−100v2δ +

θ 2

δ
+12v2δ sech2(vx)−

12
5

vθ tanh(x))

u1 (x, t) = L−1 (−A0+θu0xx− δu0xxx) =
0.24t(sinh(x)+ cosh(x))

cosh3(x)
(17)

u2 (x, t) = L−1 (−A1+θu1xx− δu1xxx) =
0.06t2(2 cosh(x) sinh(x)+2 cosh2(x)−3)

cosh4(x)

u3 (x, t) = L−1 (−A2+θu2xx− δu2xxx) =
0.02t3(−6 sinh(x)+2 sinh(x) cosh2(x)−3 cosh(x)+2 cosh3(x))

cosh5(x)

So, the solution in a series form is given by

u(x, t) = 0.5+0.24sech2(x)−0.48tanh(x)+
0.24t (sinh(x)+ cosh(x))

cosh3(x)

+
0.06t2(2cosh(x)sinh(x)+2 cosh2(x)−3)

cosh4(x)

+
0.02t3(−6sinh(x)+2sinh(x) cosh2(x)−3cosh(x)+2 cosh3(x))

cosh5(x)
.

We plot the solution and AE profiles of KdV-Burger equation att= 0.01, 1, 2, 2.5 using ADM.
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Fig. 3: Comparison of ADM (dotted line) and exact (solid line) solutions corresponding to KdV-Burger equation at
t = 0.01,1,2 and 2.5 where−20≤ x ≤ 20.

6 Numerical results and some illustrations

In this section, we present the following tables to describethe absolute errors between the exact and numerical solutions.
The tables illustrate the errors for both methods, the Adomian decomposition method and the method of lines compared
with the exact solution, at different values oft.

It is observed that if we increase the number of terms in algorithm (17), the size of calculation is maximized with no
increase in accuracy so the reduction of terms facilities the construction of Adomian polynomials for nonlinear operators
and gives the same accuracy. ADM can provide the solution with minimal number of iterations.

A comparison between the numerical MOL and the decomposition methods with those obtained by exact solution are
given for∆ t = 10−3

. From the tables, we can observe that the decomposition method is accurate as compared with MOL
at small period of time but with increasing the time, the MOL is more accurate when compared with ADM.

It is noted that when the time increase by using ADM graduallyless accuracy and leads to increased errors. From the
comparative study between ADM and the MOL we may conclude that the MOL is more accurate than ADM. To
demonstrate the efficiency of our methods we report the absolute errors in some arbitrary points in Tables 1-5.
From the above tables we can infer that ADM have better convergence at smallt. However, a closer look at the errors of
ADM reveals that the error considerably increments with increasing the time. This is an indication of little stability on the
part of ADM, in contrast to the MOL. By increasing the number of terms not affect on the accuracy of solution.
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Fig. 4: The absolute error between the exact solutionu(x, t) and the (ADM) solution using seven terms for KdV-Burger
equation att = 0.01,0.05,0.1,1,2 and 5 where−20≤ x ≤ 20.
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Table 1: The absolute error of MOL and ADM approximation solutions for N = 500 andt = 1 for KdV-Burger equation.

t=1

x Error of MOLI Error of MOLII
Error of ADM
Using 5 terms

Error of ADM
Using 7 terms

-6 1.95076971*10−8 1.045180608*10−8‘ 1*10−10 1*10−10

-4.8 1.97223468*10−8 1.840800845*10−8 5*10−10 1*10−10

-3.6 1.951909900*10−8 5.144083159*10−8 3.63*10−8 1.05*10−8

-2.4 4.6626724703*10−8 6.023997785*10−8 3.7610*10−6 1.0071*10−6

-1.2 5.940662235*10−7 5.499337451*10−4 1.2750*10−5 2.91644*10−5

0 2.669026577*10−7 3.292312710*10−5 1.4363*10−5 6.85968*10−5

1.2 3.148278159*10−8 4.142080438*10−4 1.9719*10−5 3.76501*10−5

2.4 3.198081237*10−7 2.668147003*10−5 5.0092*10−5 1.64418*10−5

3.6 5.789936818*10−9 9.517125206*10−6 2.1215*10−8 2.7171*10−10

4.8 8.49272577*10−9 1.006655001*10−6 2.0844*10−8 2.900*10−10

6 3.378234497*10−11 9.394625356*10−8 1.9060*10−8 2.690*10−9

7.2 5.128405755*10−10 8.426382432*10−8 1.750*10−8 2.601*10−10

8.4 4.189192603*10−10 6.594602121*10−8 3.30*10−8 2*10−10

9.6 2.438327352*10−10 1.871565402*10−8 80*10−8 7*10−10

10.8 2.263137420*10−10 1.420102646*10−8 1.30*10−8 1.3*10−10

12 5.151473414*10−10 5.898389068*10−9 20.*10−8 2*10−10

13.2 3.799035079*10−10 5.048499812*10−9 1*10−8 1*10−10

14.4 4.030135947*10−10 4.614364446*10−9 0 0
15.6 4.006248145*10−10 1.144917494*10−9 0 0

Table 2: The absolute error of MOL and ADM approximation solutions for N = 500 andt = 5 for KdV-Burger equation.

t=5

x Error of MOLI Error of MOLII
Error of ADM
Using 5 terms

Error of ADM
Using 7 terms

-6 9.811727574*10−8 3.184064122*10−8 1.98*10−7 3.05*10−7

-4.8 9.793326538*10−8 3.621059003*10−8 0.0000023854 3.7214*10−6

-2.4 9.791718291*10−8 4.904787680*10−8 0.0305207870 0.734788826
-1.2 9.561010450*10−7 1.087383183*10−7 0.4783218562 2.054157460
0 1.278075613*10−8 1.349134235*10−5 9.460043003 6.074811896

1.2 2.789549492*10−7 4.013708042*10−5 2.405908954 0.513555601
2.4 3.306383080*10−6 1.320023576*10−6 0.4095884839 0.024382254
3.6 1.313720809*10−6 5.262008329*10−5 0.0532855839 4.14292*10−4

4.8 6.730153226*10−8 2.570498745*10−5 0.0071441455 0.000037755
6 2.291066074*10−8 1.209137799*10−5 0.0006701499 0.000003425

7.2 3.507566520*10−8 1.745862402*10−6 0.0000609787 0.004340444
8.4 1.207410716*10−9 1.909985603*10−8 0.0000055334 3.108∗10−8

9.6 1.932325111*10−9 1.860166550*10−8 5.016*10−7 2.821*10−7

10.8 1.957402014*10−9 1.685257301*10−8 4.555∗10−8 2.57*10−8

12 2.032961226*10−9 1.914493980*10−8 4.140∗10−8 2.7*10−9

13.2 1.959853588*10−9 2.581864930*10−8 4.100∗10−10 7*10−10

15.6 2.006210853*10−9 6.316530631*10−8 0 0

7 Conclusion

In this article, the method of lines and Adomian decomposition method have been implemented for obtaining solutions of
the KdV-Burger equations. The results show that the considered methods are powerful mathematical tools for obtaining
accurate solutions. A comparison between MOL and ADM shows that the accuracy of the MOL is better than that in
the ADM for solutions when the time increase. Moreover, MOL can overcome difficulties arising in the calculation of
Adomian’s polynomials. Therefore the MOL is more convenient to apply than ADM. we conclude that the nonlinear KdV–
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Table 3: The absolute error of MOL and ADM approximation solutions for N = 500 andt = 10 for KdV-Burger equation.

t=10

x Error of MOLI Error of MOLII
Error of ADM
Using 5 terms

Error of ADM
Using 7 terms

-6 1.9560421002*10−7 1.845876784*10−7 7.664*10−7 0.000002454
-4.8 1.9584247256*10−7 2.630796691*10−7 0.000093045 0.000297790
-2.4 1.96117980187*10−7 8.770627557*10−7 1.200017453 40.44833669
-1.2 1.95971405431*10−7 1.5001417885*10−7 24.03445058 41.42833669
0 1.95718343751*10−7 0.00001279501426 276.1600000 40.44833669

1.2 1.92183368330*10−7 0.00036723414692 16.07921173 22.73310721
2.4 5.86544390831*10−9 0.00040572874333 1.105687563 2.955500615
3.6 5.59678794643*10−7 0.00071548482367 0.613696532 0.434259679
4.8 4.3823289428*10−8 2.4049120831*10−5 0.197800572 0.181425669
6 1.9672920730*10−8 1.3278297395*10−5 0.021564028 0.0200777332

7.2 9.11246966527*10−7 2.397605292*10−6 0.001991421 0.0018565813
8.4 3.04337807585*10−8 3.1510888284*10−7 0.000180951 0.0001687194
9.6 3.9962598039*10−8 3.5804745633*10−7 0.000016418 0.0000153083
10.8 2.762818601*10−9 3.6336069673*10−7 0.000001489 0.0000527848
12 3.87726236579*10−9 3.9331884238*10−9 1.3518*10−7 0.0000013888

13.2 3.90540066477*10−9 1.219562827*10−9 1.8941*10−8 1.2605*10−9

15.6 4.0757175020*10−9 6.4857230157*10−9 1.02*10−9 9.401*10−9

Table 4: The absolute error of MOL and ADM approximation solutions for N = 500 andt = 15 for KdV-Burger equation.

t=15

x Error of MOLI Error of MOLII
Error of ADM
Using 5 terms

Error of ADM
Using 7 terms

-6 2.6810669007 *10−7 6.5914829150*10−7 0.000006263 0.0000304262
-4.8 2.7989134165*10−7 1.1667666832*10−7 0.000760262 0.0036916033
-2.4 2.8726718315*10−7 2.1687496243*10−7 0.091381742 0.4412447347
-1.2 2.9121456435*10−7 1.6623724619*10−7 9.835546960 44.47559886
0 2.9299921155*10−7 1.7657941775*10−7 214.2414628 401.2058844

1.2 2.9380452071*10−7 4.7485260168*10−7 1947.360000 41.85274520
2.4 2.93992226563*10−7 2.1203759859*10−7 887.9344146 3562.564660
3.6 2.93755557767*10−7 1.7390018314*10−7 99.76715580 175.5591839
4.8 2.90562275906*10−7 1.2607281341*10−7 11.74070201 32.81122881
6 1.5035556899*10−7 9.633360150*10−6 0.2238971429 2.267795046

7.2 6.7054763575*10−7 6.0726624081*10−5 0.8501790915 0.663658713
8.4 0.0000050517426 8.3269207999*10−4 0.8296939158 0.8127640893
9.6 1.6956484610*10−7 1.4092512420*10−4 0.0280762015 0.0279368659
10.8 3.2263613634*10−8 2.768658380*10−6 0.0025992930 0.0025866527
12 3.5331507095*10−9 3.0166396709*10−4 0.0002362413 0.0002350946

13.2 3.5331507095*10−9 3.8576692407*10−9 0.0000214347 0.0000213307
15.6 5.7036779084*10−9 5.0145934626*10−9 1.7661*10−7 1.7575*10−9

Burgers equation gives soliton solution, which representsan important application in Physics and physical problems.The
computations associated here were performed using Maple 15.
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Table 5: The absolute error of MOL and ADM approximation solutions for N = 500 andt = 25 for KdV-Burger equation.

t=25

x Error of MOLI Error of MOLII
Error of ADM
Using 5 terms

Error of ADM
Using 7 terms

-6 2.821226859*10−7 9.39531785*10−7 0.0000856438 0.000700732
-4.8 3.061088577*10−7 9.39531785*10−7 0.0103965637 0.085022365
-2.4 3.300522158*10−7 2.038498259*10−7 1.249903314 10.16613057
-1.2 3.538602846*10−7 2.155697842*10−7 134.8547761 1029.221566
0 3.773140159*10−7 8.775313808*10−7 3142.318964 7149.615382

1.2 3.999921515*10−7 8.775313800*10−7 23093.26000 4253.757852
2.4 4.213395193*10−7 1.003352956*10−7 11341.68709 68668.29557
3.6 4.403334442*10−7 1.056396081*10−7 1068.966557 2693.452757
4.8 4.560730912*10−7 1.007154359*10−7 138.6426807 590.2571954
6 4.685195856*10−7 9.778011733*10−7 12.08368861 55.89151403

7.2 4.775559218*10−7 9.65407757∗10−7 0.2264402879 4.224219303
8.4 4.840431980*10−7 6.316896550*10−7 0.9502332627 0.917313296
9.6 4.097090497*10−7 4.952353226*10−5 0.9591052401 0.956118795
10.8 5.449300515*10−7 1.892324320*10−4 0.9589183454 0.958647421
12 5.711332285*10−6 8.466932619*10−5 0.8905563998 0.890531822

13.2 2.695173913*10−6 9.816296780*10−5 0.3422403071 0.342238077
15.6 1.959096925*10−8 1.660263860*10−5 0.00388467196 0.003884653
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