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Abstract: This paper presents a new FMM algorithm for the linearized Poisson-Boltzmann equation in three dimensions. The
performance of the proposed algorithm is assessed on a example in three dimensions and compared with the direct method. The
numerical results show the power of the new method, that allow to achieve the best schemes to reduce the time of the particle
interactions, which are based on diagonal form of translation operators for linearized Poisson-Boltzmann equation.
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1 Introduction

The solution of integral equation by elementary boundary integral methods usually leads to solve systems of linear
equations, whose matrix is complex, full and non-symmetric. This type of problem has been extensively studied and we
can identify two main methods of resolution.

The first is the direct schemes, which factorize the matrix. The second method is the iterative schemes which require the
application of the matrix of the system to a sequence of recursively generated vectors. For the first method, once the
matrix is factorized one can solve the system for second additional members at a reduced cost compared to the
factorization.

One of the standard approaches based on the factorization is LU (nonsymmetric matrix) or LTUL (symmetric matrix).
On the other side, when the matrixes are generated by the boundary element method, which are full, and when the
number of unknown nodal becomes high, the direct schemes are very expensive in computing time and memory space.
For a system with N degrees of freedom, the storage of the matrix is of the order of O(N2), and the solution time grows
to O(N3). On current personal computers, these conditions limit us for a problem whose size is of the order of tens of
thousands of unknown nodals, and that limits the possible applications. For this reason in practice iterative methods are
attractive. The storage of the matrix is no longer necessary and the process is accelerated. Each iteration typically uses a
matrix-vector product which leads to computation time of order O(nN2), where n is much lower than the number of
unknown systems. The solution ends when the residual is less than a limit set in advance by the user. To do this each
iteration has a specific strategy but they are all based on the same principle. On the same subject, for example there are
many recent works about the fixed point theorems [48,49].
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The main step of the iterative methods is evaluation at each iteration, of the residual :

B−AU

which needs to carry out the product of the test vector U by the matix A. In the general case where the matrix is full, the
computation time is of order O(nN2) operations. Moreover, it is now well known, that this computational cost may be
drastically reduced for the systems issued from the interaction problems, using the so called the Fast Multipole Methods
(FMM), which was originally introduced by Rokhlin and Greengard [1] for the simulation of systems with large numbers
of interacting particles.

The advantages of the FMM can be huge when large numbers of particles are involved, as it reduces the complexity of
calculations from O(N2) to O(N). The cost of a matrix-vector product becomes an order O(N) for solving static
problems (Laplace’s equation or elastostatic) and an order O(N log(N)) for dynamic problems (Helmholtz, Maxwell).

The FMM was then extended to investigate the N-body problems such as the Lennard-Jones Potential [3]. An FMM for
the Helmholtz equation in 2D was published in the article [8] then in 3D [9]. These algorithms lead to complexity of
O(N3/2) for the single-level FMM, which have been improved by R.L. Wagner and W.C. Chew [10] using the concept of
propagation of rays. The multi-level version has been developed in two dimensions in [11], and in three dimensions in
[12] by the team of W.C. Chew. E. Darve presented the multi-level FMM for the Helmholtz/Maxwell equations [13,14].
Through the work of Rokhlin for the Helmholtz equation [15,16,17], he leads to algorithms of order O(N logN). For
specific details on the error estimates, we refer the reader to the article of E. Darve [18]. Similarly, for a numerical study
of the method, we refer to the article [19]. Given the interest of this method, many applications are being considered such
as an FMM for the Maxwell equation which was published in [20,?], or the inverse problems [22]. They have also been
applied in other fields of application in numerical analysis such as molecular dynamics [23] or multidimensional
integrals [24] and in many other domains such as the problems of linear elasticity [25] or establishing a fast Gauss
transform [26]. Since, it conquers all fields of physics, It is especially used in electromagnetism [27,28] and now appears
in mechanics [29,30]. As part of the multipole method, many recent research such as the Fast Multipole accelerated
BEM for 3D visco-elastodynamic [31,32] was developped.

The FMM was introduced in the early eighties to solve problems of electrostatic with O(N) charges and O(N)

observation points. The idea of the method introduced by Rokhlin and Greengard is to accelerate the calculation by
making calculations with ≪packages≫. More precisely, the FMM can be used to reduce the number of operations
performed by two ideas. The first will be to create the ≪packages≫ of sources, i.e. an equivalent source which
represents the sources at distances more than its own length away from observations points. The second idea is to create
an observation point which represents the group sufficiently far from the ≪packages≫ of point sources considered. The
question then is the know how will be constructed these ≪packages≫? The idea, which was adopted by all multipole
algorithms is to divide the domain into cubic boxes (in the three-dimensional case). In practice, this is translated by two
important things. The first is an addition formula, which is related to the physics of the problem and which expresses the
effect of a distant point source as sum of multipole contributions. The second is the algorithm, which is the heart of the
method.

More specifically, we describe here an algorithm for the rapid evaluation of expressions of the form

Φi =
N

∑
j=1, j ̸=i

w jG(x j − xi) (1)
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where Φi is the potential due to the point xi and G is a Green’s function, given x1, ...,xN ∈ R3 and w1, ...,wN ∈ R3.

The algorithm of the FMM construct a hierarchical subdivision of the domain into cubic boxes, in which it is recursively
divided into smaller and smaller boxes. For each region in the hierarchy, the ≪far-field expansion≫ is used. In fact, the
data structure is equivalent to the notion of recursive function of tree. It will be naturally used here. A tree consists of a
single node or a node and a set of subtrees. If a branch connects a node ni to a node n j located a floor below, we say that
ni is the father of n j (and n j the child of ni). The only node with no parent is the root of the tree. All nodes having no son
are called leaf. The level of a node is its generation from the root (the root is the level 0, its childs are the level 1,...). Each
node will be for us associated to a box. So there will be a correspondence between the abstract structure of the tree and
the division of the domain into boxes.

Now how to build the tree? To start with, we take the smallest cubical box which encloses all the points xi, this box is the
root of the tree. and then constructs a hierarchical subdivision of that box, in which it is divided into eight boxes of equal
size, each of these boxes were a son of the root. Then repeat the subdivision process recursively until for example, the
lowest-level boxes (the leaf) has a maximum preselected number points in them. Note that at a given level all boxes have
the same size. In the literature this type of tree is called oct-tree, indeed, each box has a maximum number of child equal
to eight. At each level, we kept in the tree that nonblank boxes (ie boxes have one points at least). A ≪far-field
expansion≫ is produced for each box, which represents the potential due to the points on that box, at distances more
than its own length away from it. The ≪far-field expansion≫ for each ”childless” box is calculated from the points on
that box; the ≪far-field expansion≫ for each father box is calculated from the ≪far-field expansion≫ of its children.
These ≪far-field expansion≫ are not evaluated directly but translated into ≪local expansions≫, which represent the
potential inside a box due to points distant from that box. ≪local expansions≫ on father boxes are evaluated by
translating them into ≪local expansions≫ on their children; then the ≪local expansions≫ on each childless box is
evaluated on the points xi in that box.

The Algorithm of the FMM uses the addition formula as efficiently as possible. We can imagine that the addition formula
is a development in a Taylor series around a point of the fundamental solution, this is sometimes the case. Now, we
present an abstract generic addition formula, which is a representation of what is treated in each problem.

The addition formula is a series expansion of the Green’s function around an origin point x0 arbitrarily selected, that we
can present under the generic form:

G(y− x) = G(r+ r0) = ∑
n

n

∑
m=−n

Im
n (r0)Jm

n (r) in 3D (2)

and under the generic form
G(y− x) = G(r+ r0) = ∑

n
In(r0)Jn(r) in 2D (3)

where r = |y− x0| and r0 = |x0 − x| , the formulas (2),(3) are valid under certain conditions, a typical condition is
|r|> |r0|. The factors Im

n ,J
m
n , In and Jn are known analytically and dependent of the fundamental solution used.

For numerical calculations, in order to use the algorithm of the FMM, in general case the Green function must satisfy the
flowing condition and the series must be truncated to a number p of terms.

G(y− x) = G(r+ r0) =
p

∑
n=0

In(r0)Jn(r)+ ε(p,
| r |
| r0 |

) (4)
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where ε(p, |r|
|r0|

) is a decreasing function on |r|
|r0|

and p.

The addition formula (3) is accompanied by the formulas of changing of origin, which are on the form:

Jn(y− x) = ∑
n′

In′ (r0)Jn+n′ (r) (5)

In(y− x) = ∑
n′

In′ (r0)In−n′ (r) (6)

In generally case, these formulas appeared as a discrete convolution for three-dimensional case. We note that using the
formulas (5) and (6) allows us to symmetrize the addition formula, by using a series expansion around two points x0 and
y0.

G(y− x) = G(y− y0 + y0 − x0 + x0 − x)

= ∑
n

In(x0 − x)Jn(y− y0 + y0 − x0)

= ∑
n,n′

In(x0 − x)Jn+n′ (y0 − x0)In′ (y− y0) (7)

These formulas are used to create the ≪far-field expansion≫ and the ≪local expansions≫.

In this paper, we introduce some new technique such as rotation, plane wave representation and an improved algorithm
to accelerate the matrix-vector multiplication of the Yukawa potential, that accur in particle physics. The Yukawa
potential defined by:

V (r) =
e−λ r

r
(8)

where λ is a real constant and r is the radial distance to the particle.

Let’s consider a set of particles with locations x1,x2, ...,xN in three-dimensional space and q1,q2, ...,qN the
corresponding charge strengths, the potential at xi, i = 1...N due to all the other particles is:

Φ(x j) =
N

∑
i=1,i ̸= j

qi
e−λ∥x j−xi∥

∥x j − xi∥
avec λ ∈ R3 (9)

where λ ∈ R.

The Yukawa potential is considered an important issue since it was used in many areas of sciences as: physics, high
energy physics [33,34], chemistry and biology. This potential is the Green function of the partial differential equation:

∇2Φ −λ 2Φ = f (x) (10)

The Yukawa potential, which occurs in implicit marching schemes for the parabolic equations, in Debye-Huckel theory
[35] and Navier-Stokes equations. It can also be viewed as the linearized Poisson-Boltzmann equation in biochemistry
and biophysics [36,37]. In the next section, we provide the necessary formulae of the method.
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2 Mathematical preliminaries

In this section, we describe the operators TPM,TMM,TML,TLL,TLP needed by the algorithme of the new version of the
FMM in order to accelrate the matrix-vector product (9). For further details see [39].

The modified spherical Hankel and modified spherical Bessel functions kn(r), in(r) are defined in terms of the Bessel
function Jn(z) by

Iν(r) = i−νJν(ir) (i =
√
−1),

Kν(r) =
π

2sin(νπ)
(I−ν(r)− Iν(r))

kn(r) =

√
π
2r

Kn+ 1
2
(r)

in(r) =

√
π
2r

In+ 1
2
(r)

and let Pn denote the Legendre polynomial an nth-degree. Each spherical harmonics Y m
n is a nth-degree and order m. That

can be defined by the formula:

Y m
n (θ ,φ) =

√
(2n+1)

4π
(n−m)!
(n+m)!

.P|m|
n (cos(θ))eimφ (11)

where the associated Legendre function is Pm
n , It may be expressed using Rodrigues’ formula

Pm
n (x) =

(−1)m

2nn!
(1− x2)

m
2

dn+m

dxn+m (x2 −1)n ∀(n,m) ∈ IN2 avec 0 ≤ m ≤ n.

In particular,

k0(λ r) =
π
2

e−λ r

λ r
.

Using these special functions and the the Grafś addition theorem [39] we can produce the far field induced by a
collection of point sources.

Theorem 2.1.(Operator TPM). Suppose that N strengths (qi)i∈[|1,N|] are located at points xi∈[|1,N|] with spherical

coordinates (ρi,αi,βi)i∈[|1,N|], respectively. Suppose further that the points xi∈[|1,N|] are inside a sphere of radius a
centered at the origin. Then for any point x = (r,θ ,ϕ) ∈ R3\D, the potential Φ(x) generated by the strengths (qi)i∈[|1,N|]
is equal to:

Φ(x) =
∞

∑
n=0

n

∑
m=−n

Mm
n kn(λ r)Y m

n (θ ,ϕ)

where

Mm
n = 8λ

N

∑
i=1

qi.in(λρi).Y−m
n (αi,βi) ∀(n,m) ∈ N×Z avec 0 ≤| m |≤ n. (12)

Theorem 2.2. (Operator TMM) Suppose that N strengths (qi)i∈[|1,N|] are located at points xi∈[|1,N|] with spherical

coordinates (ρi,αi,βi)i∈[|1,N|], respectively. Suppose that the points xi∈[|1,N|] are inside the sphere D of radius a centered
at x0 = (ρ,α ,β ). Then for any point x = (r,θ ,ϕ) ∈ R3\D, the potential Φ(x) generated by the strengths (qi)i∈[|1,N|] is

c⃝ 2015 BISKA Bilisim Technology



76 I. Mehrez and L. El Asmi: An improved FMM Algorithm of the 3D-linearized...

described by the multipole expansion:

Φ(x) =
∞

∑
j=0

j

∑
k=− j

Mk
j k j(λ r

′
)Y k

j (θ
′
,ϕ

′
) (13)

(ρ ′
,α ′

,β ′
) are the spherical coordinates of the vector x− x0.

Suppose that D1 is the sphere centered at the origin and of radius (a1 = a+ρ). Then, for any point x = (r,θ ,ϕ) ∈ R3\D1

the field can be described by

Φ(x) =
∞

∑
j=0

j

∑
k=− j

Ok
jk j(λ r)Y k

j (θ ,ϕ). (14)

Definition 2.3. We denote by TMM , the diagonal operator maping the harmonic expansion Mm
n to the shift harmonic

expansion Om
n .

Theorem 2.4. (Operator TML) Suppose that N strengths (qi)i∈[|1,N|] are located at points xi∈[|1,N|] with spherical

coordinates (ρi,αi,βi)i∈[|1,N|] are inside the sphere D of radius a centered at x0 = (ρ,α ,β ), and that ρ > (c+ 1)a for
some c > 1. Then for any point x = (r,θ ,ϕ) ∈ D, the potential Φ(x) is given by a local expansion

Φ(x) =
∞

∑
j=0

j

∑
k=− j

Lk
ji j(λ r)Y k

j (θ ,ϕ). (15)

Definition 2.5. We denote by TML the linear operator maping the coefficients in a harmonic expansion Mm
n to the

coefficient in the corresponding harmonic expansion Lm
n .

Theorem 2.6. (Operator TLL) Suppose that N strengths (qi)i∈[|1,N|] are located at points xi∈[|1,N|] with spherical

coordinates (ρi,αi,βi)i∈[|1,N|] are inside a sphere D of radius a centered at the origin. Suppose further that for any point
x = (r,θ ,ϕ) ∈ D, the potential Φ(x) can be described by the local expansion

Φ(x) =
p

∑
j=0

j

∑
k=− j

Lk
ji j(λ r)Y k

j (θ ,ϕ) (16)

Let x0 = (ρ,α,β ) ∈ D then the field in the neighborhood of x0 can be described by a local expansion

Φ(x) =
∞

∑
j=0

j

∑
k=− j

W k
j i j(λ r

′
)Y k

j (θ
′
,ϕ

′
) (17)

where (ρ ′
,α ′

,β ′
) are the spherical coordinates of the vector x− x0.

Definition 2.7. We denote by TLL, the diagonal operator maping the harmonic expansion Lm
n to the shift harmonic

expansion W m
n .

Theorem 2.8. (Operator TLP) Suppose that N strengths (qi)i∈[|1,N|] are located at points xi∈[|1,N|] with spherical
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coordinates (ρi,αi,βi)i∈[|1,N|], respectively. Suppose further that the points xi∈[|1,N|] are located outside the sphere D of
radius a centered at the origin. Then, for any point x = (r,θ ,ϕ) ∈ D, the potential Φ(x) generated by the strengths
(qi)i∈[|1,N|] is equal to:

Φ(x) =
p

∑
j=0

j

∑
k=− j

Lk
ji j(λ r)Y k

j (θ ,ϕ)

where

Lm
n = 8λ

N

∑
i=1

qikn(λρi)Y−m
n (αi,βi) ∀(n,m) ∈ N×Z avec 0 ≤| m |≤ n. (18)

2.1 The rotation based operators

In this section, we apply the rotation representation to factorize the operators TMM and TLL. For more details, we refer the
reader to [6,42,43,44].

Theorem 2.9. We Consider the multipole expansion Mm
n , centered at x0 = (ρ,α,β ) given by the theorem (2), we rotate

the coordinate system so that the z-axis is aligned with the spherical angle β , we denote this operator Rz(β ). Then we
rotate the coordinate system so that the y-axis is aligned with the spherical angle α , we denote this operator Rz(α), then
there exist coefficients R(n,m,m

′
,α,β ) such that:

Φ(x) =
∞

∑
n=0

n

∑
m′

=−n

M̃m
′

n kn(λ r
′
)Y m

n (θ ”,ϕ ”) (19)

where (r
′
,θ ”,ϕ ”) are the new coordinates of x and

M̃m
′

n =
n

∑
m=−n

R(n,m,m
′
,α,β )Mm

n . (20)

Theorem 2.10. Consider the multipole expansion Mm
n , centered at x0 = (ρ,α ,β ) given by the theorem (2.1) which lies

along the z-axis at a distance ρ from the origin. We obtain the new coefficients given by (2)

Mm
n =

∞

∑
n′=m

Cn,n
′

m Mm
n′

(21)

where

Cn,n
′

m =
min(n,n

′
)

∑
k=m

(
1
2
)k(−1)n

′
+k(2n

′
+1)

(n
′ −m)!(n+m)!(2k)!(λρz)

−kin′+n+k(λρz)

(k+m)!(k−m)!(n′ − k)!(n− k)!k!
. (22)

Definition 2.11. We denote by T z
MM , the diagonal operator maping the multipole expansion Mm

n′
to the shift multipole

expansion Mm
n .

Theorem 2.12. Consider the multipole expansion Lm
n , centered at x0 = (ρ,α ,β ) given by the theorem (2.6) which lies
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along the z-axis at a distance ρ from the origin. We obtain the new coefficients given by

Lm
n =

∞

∑
n′=m

Cn,n
′

m Lm
n′

(23)

where

Cn,n
′

m =
min(n,n

′
)

∑
k=m

(
1
2
)k(2n

′
+1)

(n
′ −m)!(n+m)!(2k)!(λρz)

−kin′+n+k(λρz)

(k+m)!(k−m)!(n′ − k)!(n− k)!k!
. (24)

Definition 2.13. We denote by T z
MM , the diagonal operator maping the local expansion Lm

n′
to the shift multipole

expansion Lm
n .

Formally, the scheme we have outlined corresponds to the factorizations the operators TMM and TLL with respect rotation
by:

TMM = Rz(−β )◦Ry(−α)◦T z
MM(ρ)◦Ry(α)◦Rz(β ) (25)

and
TLL = Rz(−β )◦Ry(−α)◦T z

LL(ρ)◦Ry(α)◦Rz(β ) (26)

where (ρ,α,β ) is the desired shifting direction.

2.2 Exponential expansions

The new generation of FMMs is based on introducing an additional approximation tool: exponential expansions let Q =

(x,y,z) and P = (x0,y0,z0) with z > z0 and r =∥ Q−P ∥, then we have[45]):

k0(λ r) =
π
2

e−λ r

λ r
=

1
4λ

∫ ∞

0
e−(u+λ )(z−z0)

∫ 2π

0
ei
√

u2+2uλ ((x−x0)cos(α)+(y−y0)sin(α))dαdu (27)

using quadrature formula in order to approximate this integral. For the outer u integral, we use the nodes and weights and
for the inner α integral, we use the trapezoidal rule.

Lemma 2.14. let Q = (x,y,z) and P = (x0,y0,z0) with z > z0 and r =∥ Q−P ∥, Then,for any desired precision ε ,we can

write

λ | k0(λ r)−
s(ε)

∑
k=1

wk

Mk

Mk

∑
j=1

e−(uk+λ )(z−z0).ei
√

u2
k+2ukλ [(x−x0).cos(α j,k)+(y−y0).sin(α j,k)] |< ε (28)

with the flowing condition

1 ≤ z− z0 ≤ 4 et 0 ≤
√
(x− x0)2 +(y− y0)2 ≤ 4

√
2. (29)

where {wk,k ∈ [|1s(ε)|]} are the weights, {uk,k ∈ [|1,s(ε)|]} are the nodes and the s(ε) all depend on ε we use here
quadrature formula given in [43]( for further discussion and suggested methods of the degree approximation of signals
in Lp-spaces [46,47] and in another side [50,51] ) we describe in the tabular (1) some precision of s(ε) and also for the
corresponding total number of exponential Sexp = ∑s(ε)

k=1 Mk.
The following result provides an expansion of the form (28).

Corollary 2.15. Suppose that N charges (qi)i∈[|1,N|] are located at points Xi∈[|1,N|] with cartesian coordinates
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Précision(ε) s(ε) Sexp p
iprec = 0 1,6×10−3 8 52 10
iprec = 1 1,3×10−6 17 258 19
iprec = 2 1,1×10−9 26 670 29

Table 1: s(ε) et Sexp, ainsi que du p correspondant, pour les trois precisions disponibles. Chaque precision est identifiee
par une valeur de la variable iprec

(xi,yi,zi)i∈[|1,N|], respectively. Suppose further that the points xi∈[|1,N|] are located inside the cube C with unit volume
centered at the origin. Then, for any point X = (x,y,z) ∈ R3,satisfies the conditions (29). The potential Φ(X) generated
by the charges (qi)i∈[|1,N|] and let Ψε be defined by the formula:

Ψε(X)≃
s(ε)

∑
k=1

Mk

∑
j=1

W(k, j)e−(uk+λ )z.ei
√

u2
k+2ukλ .(xcos(α j,k)+ysin(α j,k)) (30)

where W(k, j) are given by

W(k, j) =
wk

Mk

N

∑
l=1

ql .e(uk+λ )(zl−z0).e−i
√

u2
k+2ukλ .((xl−x0)cos(α j,k)+(yl−y0)sin(α j,k)) (31)

for all k ∈ [|1,s(ε)|], j ∈ [|1,Mk|] we difine A = ∑N
l=1 |ql |. Then we have the folwing inequality:

|Φ(X)−λΨε(X)|< Aε (32)

In the FMM, two boxes are adjacent if they are at the same level of the hierarchy and have a boundary point. The
interaction list of a box is defined to be the list of boxes on the same level of the hierarchy which are well separated
from it but whose, parents are adjacent to its parent. For each box C in the interaction list of a box B, the FMM applies
a far-field-to-local translation operator to convert the far-field expansion on B into a local expansion on C. To use plane
wave representation for those translations, the interaction list subdivided into six lists, associated with the six coordinate
directions (+z,−z,+y,−y,+x,−x).

1. Downlist: boxes separated by at least one box in the -z-direction
2. Uplist: boxes separated by at least one box in the +z-direction.
3. Northlist: boxes separated by at least one box in the +y-direction, and are not contained in the Uplist or Downlist.
4. Southlist: boxes separated by at least one box in the -y-direction, and are not contained in the Uplist or Downlist.
5. Eastlist: boxes separated by at least one box in the +x-direction, and are not contained in the Uplist, Downlist,

Northlist or Southlist.
6. Westlist : boxes separated by at least one box in the in the Uplist, Downlist, Northlist or Southlist.

Remark 2.16. It is easy to chek for two boxes, B, C, that:

c ∈ Uplist(B)⇔ B ∈ Downlist(C) (33)

c ∈ Northlist(B)⇔ B ∈ Southlist(C)

c ∈ Eastlist(B)⇔ B ∈ Westlist(C)

and if we choose two boxes B and C, if C ∈ Uplist(B), then for any point X0 = (x0,y0,z0) ∈ B and X = (x,y,z) ∈ C we
have

1 ≤ z− z0 ≤ 4 et 0 ≤
√
(x− x0)2 +(y− y0)2 ≤ 4

√
2. (34)
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3 Conversion between exponential and partial-wave expansions

Expansions of the form (30) will be referred to as exponential expansions. Their main utility is that translation takes a
particularly simple form.

Theorem 3.1. Suppose that a box B of volume d3 centered at the origin and a box B. Suppose that B ∈ Downlist(C). and

Mm
n ( ∀(n,m) ∈ N×Z avec 0 ≤| m |≤ n) be the multipole expansion B, see the theorem (2)). for any point X ∈C

Φ(X)≃ λ
s(ε)

∑
k=1

Mk

∑
j=1

W(k, j)e−(uk+λ )( z
d ).ei

√
u2

k+2ukλ .(( x
d )cos(α j,k)+( y

d )sin(α j,k)) (35)

where (x,y,z) are the Cartesian coordinates of X and W(k, j) for all k ∈ [|1,s(ε)|], j ∈ [|1,Mk|] is given by :

W(k, j) =
πwk

2dλMk

p

∑
m=−p

i|m|.eimα j,k
p

∑
n=|m|

Mm
n

√
2n+1

4π

√
(n−|m|)!
(n+ |m|)!

P|m|
n (

λ +uk

λ
) (36)

Definition 3.2. We denote by CMX the linear operator maping the coefficients in harmonic expansion Mm
n to the

coefficient in the exponential expansion W(k, j).

Theorem 3.3. We view the formula (30) as an expansion centered at the origin for X = (x,y,z). Then for any

X0 = (x0,y0,z0) ∈ R3 we have

Φ(X)≃
s(ε)

∑
k=1

Mk

∑
j=1

V(k, j).e−(uk+λ )(z−z0).ei
√

u2
k+2ukλ .((x−x0)cos(α j,k)+(y−y0)sin(α j,k)) (37)

where

V(k, j) = W(k, j).e−(uk+λ )z0 .ei
√
(u2

k+2ukλ )x0 cos(α j,k)+y0 sin(α j,k)) (38)

for k ∈ [|1,s(ε)|] and j ∈ [|1,Mk|].

Definition 3.4. we denote by Db̃c the diagonal operator maping the exponential expansion W(k, j) to the shift

exponential expansion V(k, j).

Theorem 3.5. Suppose that N charge of strengths (qi)i∈[|1,N|], located at points xi∈[|1,N|] are inside box B of volume d3

centered at the origin. Then for any point X = (x,y,z) ∈ Uplist(B), the potential Φ(X) satisfies the inequality

Φ(X)≃ λ
s(ε)

∑
k=1

Mk

∑
j=1

W(k, j)e−(uk+λ )( z
d ).ei

√
u2

k+2ukλ .(( x
d )cos(α j,k)+( y

d )sin(α j,k)) (39)

Then there exists an integer p such that

Φ(X)≃
p

∑
n=0

n

∑
m=−n

Lm
n in(r)Y m

n (θ ,ϕ) (40)
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where (r,θ ,ϕ) are the spherical coordinates of X and we have

Lm
n = (−1)ni|m|√4π

√
2n+1

√
(n−|m|)!
(n+ |m|)!

s(ε)

∑
k=1

P|m|
n (

uk +λ
λ

)
Mk

∑
j=1

W(k, j).eimα j,k (41)

for n ∈ [|0, p|] and j ∈ [|−n,n|].

Definition 3.6. We denote by CXL the linear operator maping the coefficients in an exponential expansion V(k, j) to the

coefficient in the harmonic expansion Lm
n .

Remark 3.7. Suppose that B and C be two boxes, if C ∈ Uplist(B). Then the translation operator TML given in the

theorem (2.4) which converts a multipole expansion centered in B to a local expansion centered in C can be write as

TML =CXL ◦Db̃c ◦CLX . (42)

Remark 3.8. The cost of single multipole-to-local translation using the factorisation of (42) is

O(2p2 +2p2s(ε)+2pSexp) = O(2p2 +4p3) = O(p3)

since s(ε) ≈ p and Sexp ≈ p2. In the FMM, a large number of multipôle-to-local translation is of O(p3) or O(p4) but in
the new FMM, a large number of multipôle-to-local of exponential translation, costs O(p2)(FIG.1.)

Fig. 1: In the FMM, using the operator TML, costing O(p3) or O(p4) but in the new FMM using Db̃c, costing O(p2)
.
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The decomposition (42) of the operator TML is valid only when box C ∈ Uplist(B). This corresponds to the factorization
for all other case:
if c ∈ Downlist(b)

T Down
ML = Ry(−π)CXLDb̃cCMXRy(π) (43)

if c ∈ Eastlist(b)

T East
ML = Ry(−π/2)CXLDb̃cCMXRy(π/2) (44)

if c ∈ Westlist(b)

TWest
ML = Ry(π/2)CXLDb̃cCMXRy(−π/2) (45)

if c ∈ Northlist(b)

T North
ML = Ry(−π/2)Rz(−π/2)CXLDb̃cCMXRy(π/2)Rz(π/2) (46)

if c ∈ Southlist(b)

T South
ML = Ry(π/2)Rz(−π/2)CXLDb̃cCMXRy(−π/2)Rz(π/2) (47)

where Ry and Rz the operators defined by the theorem (2.9)

Definition 3.9. We denote TU p
ML the operator given by the theorem(3.3).

Then, for Dir ∈ {U p,Down,East,West,North,South}

T Dir
ML = QDirDb̃cP

Dir (48)

and
QU p =CXL

PU p =CMX

QDown = Ry(−π)CXL

PDown =CMXRy(π)

etc.

Now, we describe the algorithm of new FMM.

Comments

–N : The number of particles.
–s: The average number of particles per box.
–The number of boxes at the finest level is then 8n.
–H ≈ log8(N) : The number of rafinement levels .
–Ml,i : The multipole expansion for box i at level l.
–Ll,i : The locale expansion for box i at level l.
–p : The order of the multipole expansion.
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–Wi : The ”outgoing” exponential expansion for the box i.
–Vi : The ”incoming” exponential expansion for the box i
–p(i) : The parent of the box i.
–F(i): The children of the box i.
–V (i): The neighbor boxes of the box i.

Algorithm

Upward Pass:

step 1

Do for i = 1 to 8H

In applying TPM by using Theorem (2.1)to calcul MH,i .
End do

step 2

Do for l = H −1 to 0
Do for i = 1 to 8l

Ml,i = ∑k∈F(i) TMM(Ml+1,k) In applying TMM, use the factorisation (25)).
End do

End do

Downward Pass:
Initialization

(L1,1,L1,2,L1,3,L1,4,L1,5,L1,6,L1,7,L1,8) = (0,0,0,0,0,0,0,0)

step 3A

Do for l = 2 to 8H

Do for i = 1 to 8l

In applying TLL

use the factorisation (26).
Ll,i = TLL(Ll−1,p(i))

End do

step 3B

Do for Dir =U p,Down,East,West,North,South
Do for i = 1 à 8l

Wi = PDirMl,i

End do

Do for i = 1 à 8l

Vi = ∑k∈−Dirlist(i) Dk̃iWk

Ll,i = Ll,i +QDirVi

End do

End do

End do

Direct calculation:
Do for i = 1 à 8H

for each particle x j in each box i at the finest level n.
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Vi(x) = ∑ j∈V (i) ∑k/xk∈ j qk
e−λ∥x−xk∥

∥x−xk∥
End do

End do

Evaluation:
Do for i = 1 to 8H

for each particle x j in each box i at the finest level n.
Φ(x j) = Vi(x j)+TLP(Ll,i) In applying TLP via the theorem (2)

End do

End do

Complexity

Upward Pass: Step1 require N p2 work, Step2 require p3N/s.
Then the total operation count is N p2 + p3N/s.

Downward Pass: In the step3B, the operator PDir and QDir require a total 20p3N/s work, in addition Dk̃i require
40p2N/s work, while the step3A require approximately 2p3N/s. Then this phase require a total approximately

22p3N/s+40p2N/s

Direct Calculation: Require 27Ns work

Evaluation : Require N p2 work

The total operation count of this algorithm is

2N p2 +27Ns+23p3N/s+40p2N/s

with s = p we have.
25N p+67N p2

4 Numerical results

The algorithm described above has been implemented using Fortran. We assume that the molecules are distributed
randomly but uniformly in the cylinder of radius 0.5 and height 1 centered at the origin and assign random
charges(Tab.2). In the (Tab.3) the 10 first charges(points) and their corresponding potential ΦFMM(x)(Results for the
FMM) values are presented (where we set the parameters p = 9, s = 9, λ = 0.1 and N = 1000).

From the graph (Fig.2), we can see that our methods is faster than the direct method. We show on the figure (Fig.3) the
results for the times obtained with different level , which were a perfectly decreasing function versus the levels. We plot
the max value of error between the FMM and the direct method in the (Fig.4). We have demonstrated from the graph
(Fig.5) that in the algorithm of the FMM we used to much more the far-interaction than the near-interaction when the
level is increasing.
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charges x y z strengths
x1 −4.865305×10−2 −0.116861 −8.534741×10−2 −0.432231
x2 4.931268×10−2 −1.569199×10−2 0.265337 −0.468166
x3 −4.690647×10−2 0.432640 0.387879 9.132957×10−2

x4 −2.122139×10−3 0.333354 −0.313664 0.235652
x5 −3.849470×10−2 0.198658 −0.144396 0.138299
x6 4.082102×10−2 −0.205999 −0.235028 −0.122506
x7 4.162001×10−3 −0.490718 0.499465 −0.487098
x8 3.424971×10−2 0.352470 −3.298902×10−2 −0.446392
x9 4.767475×10−2 −0.303245 0.356972 −0.355786
x10 3.006620×10−2 0.229397 0.485790 −0.316594

Table 2: The first 10 charges with Cartesian coordinates (x,y,z) and the corresponding strengths.

ΦDirect ΦFMM
x1 −501.21302400160931 −501.19261117960400
x2 −512.57062662156181 −512.71830777778700
x3 −358.64606129257987 −358.66337264124934
x4 −75.771611680888114 −75.846862742769758
x5 −316.55716166806576 −316.55240570929720
x6 −385.06053121793047 −385.05057788179772
x7 90.132160675063830 90.130162454275805
x8 −468.81730704742853 −468.84596793501078
x9 −20.470850268893468 −20.533753063751568
x10 −668.42206457284703 −668.45932308693079

Table 3: The 10 first charges(points) and their corresponding potential ΦFMM(x).

Fig. 2: Graph of times versus number of points.
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Fig. 3: Graph of times versus the levels of Octree.

Fig. 4: Graph of max values of error versus the number of points and the levels of Octree.

Fig. 5: Graph of the times of calcul of the far-interractions and near-interactions versus the levels of Octree.
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5 Conclusions

We have presented an investigation on coupling available algorithms of the new fast multipole method for the linearized
Poisson-Boltzmann equation for the purposes to accelerate the product matrix-vector in three dimensions. We applied the
FMM to points on the surface of the cylinder of radius 0.5 and height 1 centered at the origin. With this approach we
achieve fast convergence for our test cases. One important aim of this paper was to identify and elucidate the remaining
issues that need to be solved in order to develop this approach into a fully general solver.
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