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Abstract: In this paper, we combine the concepts of interval-valued neutrosophic soft set and graph theory. We introduce notations
of interval-valued neutrosophic soft graph and complete interval-valued neutrosophic soft graph. We also present several different
types operations including cartesian product, union and intersection on interval-valued neutrosophic soft graphs and investigate some
properties of them.
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1 Introduction

The concept of neutrosophic set which is a powerful mathematical tool for dealing with incomplete, indeterminate and
inconsistent information was firstly proposed by Smarandache [1]. Neutrosophic sets are generalization of the theory of
fuzzy sets [2], intuitionistic fuzzy sets [3] and interval-valued intuitionistic fuzzy sets [4]. The neutrosophic sets are
characterized by a truth-membership functionT, an indeterminacy-membership functionI and a falsity membership
function F independently, which are within the real standard or nonstandard unit interval]−0,1+[. Wang et al. [5]
introduced the concept of a single-valued neutrosophic sets which is a subclass of the neutrosophic sets. They also
introduced the concept of interval-valued neutrosophic sets [6] which is more sensitive than single valued neutrosophic
sets in which three membership functions are independent and their value belong to the unit interval[0,1]. Some more
work on single valued neutrosophic sets, neutrosophic sets, interval valued neutrosophic sets and their applicationsmay
be found on [7,8,9,10,11,12].

The concept of soft set theory which is a new mathematical tool for dealing with uncertainties was initiated by
Molodtsov [13]. It has been showed that soft sets have potential applications in different fields. Maji et al. [14] presented
the definition of fuzzy soft sets and investigated some properties of this notion. Thereafter many researchers have applied
this concept on different branches of mathematics. The concept of interval-valued fuzzy soft set has been introduced by
Yang et al. [15]. The definition of neutrosophic soft sets was firstly given by Maji [16]. He also discussed many
operations such as union, intersection and complement on neutrosophic soft sets. The concept of interval-valued
neutrosophic soft set which is a generalization of fuzzy soft sets, interval-valued fuzzy soft sets and neutrosophic soft
sets were given by Deli [17].

Graph theory was firstly introduced by Euler [18]. Since then graph theory has become the most important partof
combinatorial mathematics. A graph is used to create a relationship between a given set of elements. Each element can
be represented by a vertex and the relationship between themcan be represented by an edge. The concept of graph has
been applied to different algebraic structures in mathematics.

In this paper, primarily, we give the concepts of soft set, neutrosophic set, neutrosophic soft set, interval-valued
neutrosophic soft set, graph and interval-valued neutrosophic graph. After that we introduce the notion of interval-valued
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neutrosophic soft graph and give some related examples. We also present several different types operations including
cartesian product, union and intersection on interval-valued neutrosophic soft graphs and investigate some properties of
them.

2 Preliminaries

Definition 1. [1] A neutrosophic set A on the universe of discourse U is defined as A= {〈x,TA(x), IA(x),
FA(x)〉,x ∈ U}, where the functions T, I ,F : U →]−0,1+[ define a truth-membership function, an
indeterminacy-membership function and a falsity-membership function of an element x∈U for a set A, respectively, with
the condition−0≤ TA(x)+ IA(x)+FA(x) ≤ 3+. The neutrosophic set takes the value from real standard or non-standard
subsets of]−0,1+[. We consider the neutrosophic set which takes the value fromthe subset of[0,1]. The family of all
neutrosphic sets on U is denoted byN (U).

Definition 2. [16] Let U be an inital universe set, E be a set of parameters and A⊆ E. If F is a mapping given by
F : A→ N (U), then a pair(F,A) is called a neutrosophic soft set over U.

Definition 3. [17] Let U be an inital universe set. Then an interval-valued neutrosophic set A over U can be represented
by the set A= {〈x,TA(x), IA(x),FA(x)〉,x∈U}, where

TA(x) = [TA(x)
−
,TA(x)

+]

IA(x) = [IA(x)
−
, IA(x)

+]

FA(x) = [FA(x)
−
,FA(x)

+]

and0≤ TA(x)+ IA(x)+FA(x)≤ 3 for each point x in U. The family of all interval-valued neutrosphic sets on U is denoted
by IVN (U).

Definition 4. [17] Let U be an initial universe set and A⊆ E be a set of parameters. If F is a mapping given by F: A→
IVN (U), then a pair(F,A) is called an interval-valued neutrosophic soft set over U.

Definition 5. [18] A graph G∗ consists of set of finite objects V= {v1,v2,v3, . . . ,vn} called vertices and other set E=
{e1,e2,e3, . . . ,en} whose elements are called edges. Usually a graph is denoted as G∗ = (V,E).

Definition 6. [19] An interval-valued neutrosophic graph of a graph G∗ = (V,E) is given by a pair G= (A,B), where
A=< [T−

A ,T+
A ], [I−A , I+A ], [F−

A ,F+
A ]> is an interval-valued neutrosophic set on V and B=< [T−

B ,T+
B ], [I−B , I+B ], [F−

B ,F+
A ]>

is an interval-valued neutrosophic relation on E such that

T−
B (vi ,v j)≤ min{T−

A (vi),T
−

A (v j)}, T+
B (vi ,v j)≤ min{T+

A (vi),T
+
A (v j)}

I−B (vi ,v j)≥ max{I−A (vi), I
−
A (v j)}, I+B (vi ,v j)≥ max{I+A (vi), I

−
A (v j)}

F−
B (vi ,v j)≥ max{F−

A (vi),F
−
A (v j)}, F+

B (vi ,v j)≥ max{F+
A (vi),F

+
A (v j)}

for all (vi ,v j) ∈ E.

3 Interval-valued neutrosophic soft graphs

Definition 7. An interval-valued neutrosophic soft graph is given by ordered 4-tuple G= (G∗,K,M,A) such that

(i) G∗ = (V,E) is a simple graph
(ii) A is a nonempty set of parameters
(iii) (K,A) is an interval-valued neutrosophic soft set over V
(iv) (M,A) is an interval-valued neutrosophic soft set over E
(v) (K(e),M(e)) is an interval-valued neutrosophic graph of G∗ for all e∈ A. That is

T−
M(e)(x,y)≤ min{T−

K(e)(x),T
−
K(e)(y)}, T+

M(e)(xy)≤ min{T+
K(e)(x),T

+
K(e)(y)}
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I−M(e)(x,y)≥ max{I−K(e)(x), I
−
K(e)(y)}, I+M(e)(xy)≥ max{I+K(e)(x), I

+
K(e)(y)}

F−
M(e)(x,y) ≥ max{F−

K(e)(x),F
−
K(e)(y)}, F+

M(e)(xy)≥ max{F+
K(e)(x),F

+
K(e)(y)}

such that0≤ TM(e)(x,y)+ IM(e)(x,y)+FM(e)(x,y)≤ 3 for all e∈ A and x,y∈V. The interval-valued neutrosophic graph
(K(e),M(e)) is denoted by H(e) for convenience. An interval-valued neutrosophic soft graph is a parameterized family
of interval-valued neutrosophic graphs.

Example 1.Consider a simple graphG∗ = (V,E) such thatV = {v1,v2,v3} andE = {v1v2,v2v3,v3v1}. Let A= {e1,e2}
be a set of parameters and let(K,A) be an interval-valued neutrosophic soft set overV with its approximate function
K : A→ IVN (V) defined by

K(e1) = {v1|([0.2,0.6], [0.1,0.3], [0.2,0.3]),v2|([0.4,0.5], [0.6,0.7], [0.3,0.4],v3|([0.2,0.3], [0.2,0.4], [0.3,0.5])}

K(e2) = {v1|([0.3,0.4], [0.4,0.5], [0.2,0.7]),v2|([0.2,0.4], [0.3,0.4], [0.4,0.5]),v3|([0.2,0.3], [0.5,0.6], [0.4,0.8])}

Now let(M,A) be an interval-valued neutrosophic soft set overE with its approximate functionM : A→ IVN (E) defined
by

M(e1) = {v1v2|([0.1,0.4], [0.7,0.8], [0.4,0.5])}

M(e2) = {v1v2|([0.1,0.2], [0.6,0.7], [0.5,0.8]),v2v3|([0.1,0.2], [0.6,0.7], [0.6,0.9]),v3v1|([0.1,0.3], [0.6,0.7], [0.5,0.8])}

It is clearly seen thatH(e1) = (K(e1),M(e1)), H(e2) = (K(e2),M(e2)) are interval-valued neutrosophic graphs
corresponding to the parameterse1 ande2. HenceG= (G∗,K,M,A) is an interval-valued neutrosophic soft graph ofG∗

as shown in Figure 1.

v1

< [0.2,0.6], [0.1,0.3], [0.2,0.3]>

v2

< [0.4,0.5], [0.6,0.7], [0.3,0.4]>
< [0.1,0.2], [0.4,0.5], [0.4,0.6]>

H(e1)

v1

< [0.3,0.4], [0.4,0.5], [0.2,0.7]>

v2

< [0.2,0.4], [0.3,0.4], [0.4,0.5]>
< [0.1,0.2], [0.6,0.7], [0.5,0.8]>

v3

< [0.2,0.3], [0.5,0.6], [0.4,0.8]>

<
[0.1,0.3], [0.6,0.7], [0.5,0.8]>

<
[0.

1,
0.2

], [
0.6

,0
.7]
, [0
.6,

0.9
]>

H(e2)

Fig. 1: Interval-valued neutrosophic soft graphG.

Definition 8. Let G1 = (G∗,K1,M1,A) and G2 = (G∗,K2,M2,B) be two interval-valued neutrosophic soft graphs of G∗.
Then G1 is called an interval-valued neutrosophic soft subgraph ofG2 if

(i) A⊆ B
(ii) H1(e) = (K1(e),M1(e)) is an interval-valued neutrosophic subgraph of H2(e) = (K2(e),M2(e)) for all e∈ A.
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Example 2.Consider the simple graphG∗ = (V,E) as taken in Example 1.
Now letB= {e1} be a parameter set,(K1,B) be an interval-valued neutrosophic soft set overV and(M1,B) be an interval-
valued neutrosophic soft set onE defined by

K1(e1) = {v1|([0.1,0.4], [0.3,0.5], [0.4,0.6]),v2|([0.3,0.4], [0.7,0.8], [0.5,0.7],v3|([0.1,0.3], [0.4,0.5], [0.6,0.7])}

M1(e1) = {v1v2|([0.1,0.3], [0.8,0.9], [0.7,0.9]),v2v3|([0.1,0.2], [0.8,0.9], [0.7,0.8]),v3v1|([0.1,0.2], [0.5,0.6], [0.7,0.8])}

It is clearly seen thatH1(e1) = (K1(e1),M1(e1)) is interval-valued neutrosophic graphs corresponding to the parameters
e1. Also G1 = (G∗,K1,M1,B) is an interval-valued neutrosophic soft graph as shown in Figure 2. HenceG1 is an interval-
valued neutrosophic soft subgraph ofG.

v1

< [0.1,0.4], [0.3,0.5], [0.4,0.6]>

v2

< [0.3,0.4], [0.7,0.8], [0.5,0.7]>
< [0.1,0.3], [0.8,0.9], [0.7,0.9]>

v3

< [0.1,0.3], [0.4,0.5], [0.6,0.7]>

<
[0.1,0.2], [0.5,0.6], [0.7,0.8]>

<
[0.

1,
0.2

], [
0.8

,0
.9]
, [0
.7,

0.8
]>

H(e1)

Fig. 2: Interval-valued neutrosophic soft graphG1

Definition 9. An interval-valued neutrosophic soft graph G= (G∗,K,M,A) is called a complete interval-valued
neutrosophic soft graph if

T−
M(e)(x,y) = min

{

T−
K(e)(x),T

−
K(e)(y)

}

T+
M(e)(x,y) = min

{

T+
K(e)(x),T

+
K(e)(y)

}

I−M(e)(x,y) = max
{

I−K(e)(x), I
−
K(e)(y)

}

I+M(e)(x,y) = max
{

I+K(e)(x), I
+
K(e)(y)

}

F−
M(e)(x,y) = max

{

F−
K(e)(x),F

−
K(e)(y)

}

F+
M(e)(x,y) = max

{

F+
K(e)(x),F

+
K(e)(y)

}

for all e∈ A and xy∈ E.

Example 3.Consider a simple graphG∗ = (V,E) such that

V = {v1,v2,v3,v4} andE = {v1v2,v2v3,v3v4,v4v1,v1v3,v2v4}.

Let A = {e1,e2} be a set of parameters and(K,A) be an interval-valued neutrosophic soft sets overV with its
approximation functionK : A→ IVN (V) defined by

K(e1) ={v1|([0.2,0.3], [0.1,0.5], [0.5,0.6]),v2|([0.1,0.4], [0.3,0.4], [0.4,0.7]),

v3|([0.1,0.2], [0.1,0.3], [0.5,0.7]),v4|([0.4,0.5], [0.3,0.5], [0.6,0.8])}

K(e2) ={v1|([0.3,0.4], [0.2,0.5], [0.7,0.9]),v2|([0.1,0.2], [0.3,0.4], [0.4,0.7]),

v3|([0.2,0.4], [0.3,0.4], [0.5,0.7])},v4|([0.5,0.7], [0.2,0.3], [0.4,0.6])
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Let (M,A) be an interval-valued neutrosophic soft sets overE with its approximation functionK : A→ IVN (E) defined
by

M(e1) ={v1v2|([0.1,0.3], [0.3,0.5], [0.5,0.7]),v2v3|([0.1,0.2], [0.3,0.4], [0.5,0.7]),v3v1|([0.1,0.2], [0.1,0.5], [0.5,0.7])}

M(e2) ={v1v2|([0.1,0.2], [0.3,0.5], [0.7,0.9]),v2v3|([0.1,0.2], [0.3,0.4], [0.5,0.7]),v3v4|([0.2,0.4], [0.3,0.4], [0.5,0.7]),

v4v1|([0.3,0.4], [0.2,0.5], [0.7,0.9]),v1v3|([0.2,0.4], [0.3,0.5], [0.7,0.9]),v2v4|([0.1,0.2], [0.3,0.4], [0.4,0.7])}

It is easy to see thatH(e1) andH(e2) are interval valued neutrosophic graphs ofG∗ corresponding to the parameterse1,
e2 ande3 respectively. HenceG= (G∗,K,M,A) is a complete interval-valued neutrosophic soft graph ofG∗.

Definition 10. Let G1 = (G∗
1,K1,M1,A) and G2 = (G∗

2,K2,M2,B) be two interval valued neutrosophic soft graphs of
simple graphs G∗1 = (V1,E1) and G∗

2 = (V2,E2), respectively. The cartesian product of G1 and G2 is denoted by G1×G2 =
(G∗,K,M,A×B), where G∗ = (V1×V2,E1×E2), and is defined by












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




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


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
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
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
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























(T−
K1(e1)

×T−
K2(e2)

)(x1,x2) = min
{

T−
K1(e1)

(x1),T
−
K2(e2)

(x2)
}

(T+
K1(e1)

×T+
K2(e2)

)(x1,x2) = min
{

T+
K1(e1)

(x1),T
+
K2(e2)

(x2)
}

(I−K1(e1)
× I−K2(e2)

)(x1,x2) = max
{

I−K1(e1)
(x1), I

−
K2(e2)

(x2)
}

(I+K1(e1)
× I+K2(e2)

)(x1,x2) = max
{

I+K1(e1)
(x1), I

+
K2(e2)

(x2)
}

(F−
K1(e1)

×F−
K2(e2)

)(x1,x2) = max
{

F−
K1(e1)

(x1),F
−
K2(e2)

(x2)
}

(F+
K1(e1)

×F+
K2(e2)

)(x1,x2) = max
{

F+
K1(e1)

(x1),F
+
K2(e2)

(x2)
}

for all (x1,x2) ∈V1×V2.










































(T−
M1(e1)

×T−
M2(e2)

)((x,x2)(x,y2)) = min
{

T−
K1(e1)

(x),T−
M2(e2)

(x2y2)
}

(T+
M1(e1)

×T+
M2(e2)

)((x,x2)(x,y2)) = min
{

T+
K1(e1)

(x),T+
M2(e2)

(x2y2)
}

(I−M1(e1)
× I−M2(e2)

)((x,x2)(x,y2)) = max
{

I−K1(e1)
(x), I−M2(e2)

(x2y2)
}

(I+M1(e1)
× I+M2(e2)

)((x,x2)(x,y2)) = max
{

I+K1(e1)
(x), I+M2(e2)

(x2y2)
}

(F−
M1(e1)

×F−
M2(e2)

)((x,x2)(x,y2)) = max
{

F−
K1(e1)

(x),F−
M2(e2)

(x2y2)
}

(F+
M1(e1)

×F+
M2(e2)

)((x,x2)(x,y2)) = max
{

F+
K1(e1)

(x),F+
M2(e2)

(x2y2)
}

for all x ∈V1 and (x2,y2) ∈ E2.










































(T−
M1(e1)

×T−
M2(e2)

)((x1,z)(y1,z)) = min
{

T−
M1(e1)

(x1y1),T
−
K2(e2)

(z)
}

(T+
M1(e1)

×T+
M2(e2)

)((x1,z)(y1,z)) = min
{

T+
M1(e1)

(x1y1),T
+
K2(e2)

(z)
}

(I−M1(e1)
× I−M2(e2)

)((x1,z)(y1,z)) = max
{

I−M1(e1)
(x1y1), I

−
K2(e2)

(z)
}

(I+M1(e1)
× I+M2(e2)

)((x1,z)(y1,z)) = max
{

I+M1(e1)
(x1y1), I

+
K2(e2)

(z)
}

(F−
M1(e1)

×F−
M2(e2)

)((x1,z)(y1,z)) = max
{

F−
M1(e1)

(x1y1),F
−
K2(e2)

(z)
}

(F+
M1(e1)

×F+
M2(e2)

)((x1,z)(y1,z)) = max
{

F+
M1(e1)

(x1y1),F
+
K2(e2)

(z)
}

for all z∈V2 and (x1,y1) ∈ E1.

for all e1 ∈ A and e2 ∈ B.

Example 4.Consider two graphsG∗
1 = (V1,E1) andG∗

2 = (V2,E2) such that

V1 = {u1,u2}, E1 = {u1u2} andV2 = {v1,v2,v3}, E2 = {v1v2,v2v3}

Let A= {e1} be a set of parameters, and let(K1,A) and(M1,A) be two interval-valued neutrosophic soft sets overV1 and
E1, respectively, defined by

K1(e1) = {u1|([0.3,0.5], [0.1,0.2], [0.4,0.6]),u2|([0.5,0.6], [0.2,0.4], [0.1,0.3])}

M1(e1) = {u1u2|([0.2,0.3], [0.3,0.5], [0.6,0.7])}
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Now letB= {e2} be a set of parameters, and let(K2,B) and(M2,B) be two interval-valued neutrosophic soft sets overV2

andE2, respectively, defined by

K2(e2) = {v1|([0.4,0.5], [0.3,0.4], [0.6,0.7]),v2|([0.3,0.6], [0.2,0.3], [0.1,0.4]),v3|([0.2,0.5], [0.4,0.6], [0.3,0.5])}

M2(e2) = {v1v2|([0.1,0.2], [0.4,0.5], [0.7,0.8]),v2v3|([0.1,0.4], [0.6,0.7], [0.8,0.9])}

It is easy to see that,H(e1) = (K1(e1),M1(e1)) andH(e2) = (K2(e2),M2(e2)) are interval-valued neutrosophic graphs.
HenceG1 = (G∗

1,K1,M1,A) and G2 = (G∗
2,K2,M2,B) are interval-valued neutrosophic soft graphs ofG∗

1 and G∗
2,

respectively, as shown in Figure 3.

u1

< [0.3,0.5], [0.1,0.2], [0.4,0.6]>

u2

< [0.5,0.6], [0.2,0.4], [0.1,0.3]>
< [0.2,0.3], [0.3,0.5], [0.6,0.7]>

H(e1)

v1

< [0.4,0.5], [0.3,0.4], [0.6,0.7]>

v2

< [0.3,0.6], [0.2,0.3], [0.1,0.4]>
< [0.1,0.2], [0.4,0.5], [0.7,0.8]>

v3

< [0.2,0.5], [0.4,0.6], [0.3,0.5]>

<
[0.

1,0
.4]
, [0
.6,

0.7
], [

0.8
,0.

9]>

H(e2)

Fig. 3: Interval-valued neutrosophic soft graphG1 andG2

The cartesian product ofG1 andG2 is as shown in Figure 4.

Theorem 1.If G1 and G2 are two interval-valued neutrosophic soft graphs, then so is G1×G2.

Proof. Let G1 = (G∗
1,K1,M1,A) and G2 = (G∗

2,K2,M2,B) be two interval-valued neutrosophic soft graphs of
G∗

1 = (V1,E1) andG∗
2 = (V2,E2), respectively. From Definition 10, for alle1 ∈ A ande2 ∈ B, there are three cases.

Case (i) If x1 ∈V1 andx2 ∈V2, then

(T−
K1(e1)

×T−
K2(e2)

)(x1,x2) = min(T−
K1(e1)

(x1),T
−

K2(e2)
(x2))≤ min[(T−

K1(e1)
×T−

K2(e2)
)(x1),(T

−
K1(e1)

×T−
K2(e2)

)(x2)]

Similarly, we can show that(T+
K1(e1)

×T+
K2(e2)

)(x1,x2) ≤ min[(T+
K1(e1)

×T+
K2(e2)

)(x1),(T
+
K1(e1)

×T+
K2(e2)

)(x2)]

(I−K1(e1)
× I−K2(e2)

)(x1,x2) = max(I−K1(e1)
(x1), I

−
K2(e2)

(x2))≥ max[(I−K1(e1)
× I−K2(e2)

)(x1),(I
−
K1(e1)

× I−K2(e2)
)(x2)]

Similarly, we can show that(I+K1(e1)
× I+K2(e2)

)(x1,x2) ≥ max[(I+K1(e1)
× I+K2(e2)

)(x1),(I
+
K1(e1)

× I+K2(e2)
)(x2)]

(F−
K1(e1)

×F−
K2(e2)

)(x1,x2) = max(F−
K1(e1)

(x1),F
−
K2(e2)

(x2))≥ max[(F−
K1(e1)

×F−
K2(e2)

)(x1),(F
−
K1(e1)

×F−
K2(e2)

)(x2)]
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< [0.1, 0.2], [0.4, 0.5], [0.7, 0.8] >

< [0.4, 0.5], [0.3, 0.4], [0.6, 0.7] > < [0.3, 0.6], [0.2, 0.4], [0.1, 0.4] > < [0.2, 0.5], [0.4, 0.6], [0.3, 0.5] >

<
[0
.2
,
0
.3
],
[0
.3
,
0
.5
],
[0
.6
,
0
.7
]
>

<
[0
.2
,
0
.3
],
[0
.4
,
0
.6
],
[0
.6
,
0
.7
]
>

<
[0
.2
,
0
.3
],
[0
.3
,
0
.5
],
[0
.6
,
0
.7
]
>

< [0.1, 0.4], [0.6, 0.7], [0.8, 0.9] >

u 2 v3u 2 v2u 2 v1

< [0.1, 0.2], [0.4, 0.5], [0.7, 0.8] >

< [0.3, 0.5], [0.3, 0.4], [0.6, 0.7] > < [0.2, 0.3], [0.3, 0.5], [0.6, 0.7] >

< [0.1, 0.4], [0.6, 0.7], [0.8, 0.9] >

< [0.2, 0.5], [0.4, 0.6], [0.4, 0.6] >

u 1 v1 u 1 v2 u 1 v3

Fig. 4: Cartesian product ofG1 andG2

Similarly, we can show that(F+
K1(e1)

×F+
K2(e2)

)(x1,x2) ≥ max[(F+
K1(e1)

×F+
K2(e2)

)(x1),(F
+
K1(e1)

×F+
K2(e2)

)(x2)]

Case(ii)If x∈V1 and(x2,y2) ∈ E2, then

(T−
M1(e1)

×T−
M2(e2)

)((x,x2)(x,y2)) = min(T−
K1(e1)

(x),T−
M2(e2)

(x2,y2))

≤ min[T−
K1(e1)

(x),min(T−
K2(e2)

(x2),T
−
K2(e2)

(y2))]

= min[min(T−
K1(e1)

(x),T−
K2(e2)

(x2)),min(T−
K1(e1)

(x),T−
K2(e2)

(y2))]

= min[(T−
K1(e1)

×T−
K2(e2)

)(x,x2),(T
−
K1(e1)

×T−
K2(e2)

)(x,y2)]

Similarly, we can show that(T+
M1(e1)

×T+
M2(e2)

)((x,x2)(x,y2)) ≤ min[(T+
K1(e1)

×T+
K2(e2)

)(x,x2),(T
+
K1(e1)

×T+
K2(e2)

)(x,y2)]

(I−M1(e1)
× I−M2(e2)

)((x,x2)(x,y2)) = max(I−K1(e1)
(x), I−M2(e2)

(x2,y2))

≥ max[I−K1(e1)
(x),max(I−K2(e2)

(x2), I
−
K2(e2)

(y2))]

= max[max(I−K1(e1)
(x), I−K2(e2)

(x2)),max(I−K1(e1)
(x), I−K2(e2)

(y2))]

= max[(I−K1(e1)
× I−K2(e2)

)(x,x2),(I
−
K1(e1)

× I−K2(e2)
)(x,y2)]

Similarly, we can show that(I+M1(e1)
× I+M2(e2)

)((x,x2)(x,y2)) ≥ max[(I+K1(e1)
× I+K2(e2)

)(x,x2),(I
+
K1(e1)

× I+K2(e2)
)(x,y2)]

(F−
M1(e1)

×F−
M2(e2)

)((x,x2)(x,y2)) = max(F−
K1(e1)

(x),F−
M2(e2)

(x2,y2))

≥ max[I−K1(e1)
(x),max(F−

K2(e2)
(x2),F

−
K2(e2)

(y2))]

= max[max(F−
K1(e1)

(x),F−
K2(e2)

(x2)),max(F−
K1(e1)

(x),F−
K2(e2)

(y2))]

= max[(F−
K1(e1)

×F−
K2(e2)

)(x,x2),(F
−
K1(e1)

×F−
K2(e2)

)(x,y2)]

Similarly, we can show that(F+
M1(e1)

×F+
M2(e2)

)((x,x2)(x,y2)) ≥ max[(F+
K1(e1)

×F+
K2(e2)

)(x,x2),(F
+
K1(e1)

×F+
K2(e2)

)(x,y2)]

Case (iii) If x∈V2 and(x1,y1) ∈ E1, then it can be shown in a similar way to case (ii).

Definition 11. Let G1 = (G∗
1,K1,M1,A) and G2 = (G∗

2,K2,M2,B) be two interval-valued neutrosophic soft graphs of
simple graphs G∗1 = (V1,E1) and G∗

2 = (V2,E2), respectively. The union of G1 and G2 is denoted by
G1∪G2 = (G∗,K,M,A∪B), where G∗ = (V1∩V2,E1∩E2), and is defined by
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for all (x,y) ∈ E.

Example 5.Consider two graphsG∗
1 = (V1,E1) andG∗

2 = (V2,E2) such thatV1 = {u1,u2,u3}, E1 = {u1u2,u1u3,u2u3} and
V2 = {v1,v2}, E2 = {u1,u3,v1v2}. LetA= {e1,e2} be a set of parameters and let(K1,A) and(M1,A) be two interval-valued
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neutrosophic soft sets overV1 andE1 respectively, defined by

K1(e1) = {u1|([0.4,0.6], [0.2,0.3], [0.1,0.3]),u2|([0.4,0.7], [0.2,0.4], [0.1,0.3])}

M1(e1) = {u1u2|([0.3,0.4], [0.4,0.5], [0.3,0.5])}

K1(e2) = {u1|([0.3,0.5], [0.2,0.3], [0.3,0.4]),u2|([0.2,0.3], [0.2,0.3], [0.1,0.4]),u3|([0.1,0.3], [0.2,0.4], [0.3,0.5])}

M1(e2) = {u1u3|([0.1,0.2], [0.3,0.5], [0.4,0.6]),u2u3|([0.1,0.3], [0.4,0.5], [0.4,0.5])}

Now letB= {e2,e3} be a set of parameters and let(K2,A) and(M2,A) be two interval-valued neutrosophic soft sets over
V2 andE2 respectively, defined by

K2(e2) = {v1|([0.2,0.3], [0.1,0.2], [0.3,0.5]),v2|([0.2,0.4], [0.1,0.3], [0.2,0.5])}

M2(e2) = {v1v2|([0.1,0.2], [0.4,0.5], [0.4,0.6])}

K2(e3) = {v1|([0.3,0.5], [0.2,0.3], [0.3,0.4]),v2|([0.2,0.3], [0.1,0.3], [0.4,0.5]}

M2(e3) = {v1v2|([0.1,0.2], [0.3,0.4], [0.4,0.5]}

It is easy to see thatH1(e1) = (K1(e1),M1(e1)), H1(e2) = (K1(e2),M1(e2)), H2(e2) = (K2(e2),M2(e2)) and
H2(e3) = (K2(e3),M2(e3)) are interval valued neutrosophic graphs. HenceG1 = (G∗

1,K1,M1,A) and
G2 = (G∗

2,K2,M2,B) are interval-valued neutrosophic soft graphs ofG∗
1 andG∗

2 respectively as shown in Figure 5 and
Figure 6. From Definition 12,G1 ∪ G2 = (G∗,K,M,A∪ B), where A∪ B = {e1,e2,e3}. Also H(e1) = H1(e1),

u1

< [0.4,0.6], [0.2,0.3], [0.1,0.3]>

u2

< [0.4,0.7], [0.2,0.4], [0.1,0.3]>
< [0.3,0.4], [0.4,0.5], [0.3,0.5]>

H1(e1)

u1

< [0.3,0.5], [0.2,0.3], [0.3,0.4]>

u2

< [0.2,0.3], [0.2,0.3], [0.1,0.4]>

u3

< [0.1,0.3], [0.2,0.4], [0.3,0.5]>

<
[0
.1
,0
.2
],[0

.3
,0
.5
],[0

.4
,0
.6
]
> <

[0.
1,0

.3]
, [0
.4,

0.5
], [

0.4
,0.

5]
>

H1(e2)

Fig. 5: Interval-valued neutrosophic soft graphG1

H(e2) = H1(e2)∪H2(e2), andH(e3) = H2(e3) are interval-valued neutrosophic graphs corresponding tothe parameters
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v1

< [0.2,0.3], [0.1,0.2], [0.3,0.5]>

v2

< [0.2,0.4], [0.1,0.3], [0.2,0.5]>
< [0.1,0.2], [0.4,0.5], [0.4,0.6]>

H2(e2)

v1

< [0.3,0.5], [0.2,0.3], [0.3,0.4]>

v2

< [0.2,0.3], [0.1,0.3], [0.4,0.5]>
< [0.1,0.2], [0.3,0.4], [0.5,0.6]>

H2(e3)

Fig. 6: Interval-valued neutrosophic soft graphG2

e1, e2 ande3. Hence, the union ofG1 and G2 corresponding to the parametere2 is interval-valued neutrosophic soft
graph as shown in Figure 7. The figures ofH(e1) andH(e2) can be drawn similarly.

v1

< [0.3,0.5], [0.1,0.2], [0.3,0.4]>

v2

< [0.2,0.4], [0.1,0.3], [0.1,0.4]>
< [0.1,0.2], [0.4,0.5], [0.4,0.6]>

v3

< [0.1,0.3], [0.2,0.4], [0.3,0.5]>

<
[0
.1
,0
.2
],[0

.3
,0
.5
],[0

.4
,0
.6
]
> <

[0.
1,0

.3]
, [0
.4,

0.5
], [

0.4
,0.

5]
>

H(e2)

Fig. 7: The union ofG1 andG2 corresponding to the parametere2

Theorem 2.If G1 and G2 are two interval-valued neutrosophic soft graphs, then so is G1∪G2.

Proof.By using Definition 3.10, it can be shown in a similar way to proof of Theorem 1.

Definition 12. Let G1 = (G∗
1,K1,M1,A) and G2 = (G∗

2,K2,M2,B) be two interval-valued neutrosophic soft graphs of
simple graphs G∗1 = (V1,E1) and G∗

2 = (V2,E2), respectively. The intersection of G1 and G2 is denoted by G1∩G2 =
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(G∗,K,M,A∪B), where G∗ = (V1∩V2,E1∩E2), and is defined by













































































































































































































































































































































































































(T−
K1(e)

∩T−
K2(e)

)(x) = T−
K1(e)

(x) i f e∈ A\B

(T−
K1(e)

∩T−
K2(e)

)(x) = T−
K2(e)

(x) i f e∈ B\A

(T−
K1(e)

∩T−
K2(e)

)(x) = min(T−
K1(e)

(x),T−
K2(e)

(x)) i f e∈ A∩B














(T+
K1(e)

∩T+
K2(e)

)(x) = T+
K1(e)

(x) i f e∈ A\B

(T+
K1(e)

∩T+
K2(e)

)(x) = T+
K2(e)

(x) i f e∈ B\A

(T+
K1(e)

∩T+
K2(e)

)(x) = min(T+
K1(e)

(x),T+
K2(e)

(x)) i f e∈ A∩B














(I−K1(e)
∩ I−K2(e)

)(x) = I−K1(e)
(x) i f e∈ A\B

(I−K1(e)
∩ I−K2(e)

)(x) = I−K2(e)
(x) i f e∈ B\A

(I−K1(e)
∩ I−K2(e)

)(x) = max(I−K1(e)
(x), I−K2(e)

(x)) i f e∈ A∩B














(I+K1(e)
∩ I+K2(e)

)(x) = I+K1(e)
(x) i f e∈ A\B

(I+K1(e)
∩ I+K2(e)

)(x) = I+K2(e)
(x) i f e∈ B\A

(I+K1(e)
∩ I+K2(e)

)(x) = max(I+K1(e)
(x), I+K2(e)

(x)) i f e∈ A∩B














(F−
K1(e)

∩F−
K2(e)

)(x) = F−
K1(e)

(x) i f e∈ A\B

(F−
K1(e)

∩F−
K2(e)

)(x) = F−
K2(e)

(x) i f e∈ B\A

(F−
K1(e)

∩F−
K2(e)

)(x) = max(F−
K1(e)

(x),F−
K2(e)

(x)) i f e∈ A∩B














(F+
K1(e)

∩F+
K2(e)

)(x) = F+
K1(e)

(x) i f e∈ A\B

(F+
K1(e)

∩F+
K2(e)

)(x) = F+
K2(e)

(x) i f e∈ B\A

(F+
K1(e)

∩F+
K2(e)

)(x) = max(F+
K1(e)

(x),F+
K2(e)

(x)) i f e∈ A∩B

for all x ∈V.














(T−
M1(e)

∩T−
M2(e)

)(x,y) = T−
M1(e)

(x,y) i f e∈ A\B

(T−
M1(e)

∩T−
M2(e)

)(x,y) = T−
M2(e)

(x,y) i f e∈ B\A

(T−
M1(e)

∩T−
M2(e)

)(x,y) = min(T−
M1(e)

(x,y),T−
M2(e)

(x,y)) i f e∈ A∩B














(T+
M1(e)

∩T+
M2(e)

)(x,y) = T+
M1(e)

(x,y) i f e∈ A\B

(T+
M1(e)

∩T+
M2(e)

)(x,y) = T+
M2(e)

(x,y) i f e∈ B\A

(T+
M1(e)

∩T+
M2(e)

)(x,y) = min(T+
M1(e)

(x,y),T+
M2(e)

(x,y)) i f e∈ A∩B














(I−M1(e)
∩ I−M2(e)

)(x,y) = I−M1(e)
(x,y) i f e∈ A\B

(I−M1(e)
∩ I−M2(e)

)(x,y) = I−M2(e)
(x,y) i f e∈ B\A

(I−M1(e)
∩ I−M2(e)

)(x,y) = max(I−M1(e)
(x,y), I−M2(e)

(x,y)) i f e∈ A∩B














(I+M1(e)
∩ I+M2(e)

)(x,y) = I+M1(e)
(x,y) i f e∈ A\B

(I+M1(e)
∩ I+M2(e)

)(x,y) = I+M2(e)
(x,y) i f e∈ B\A

(I+M1(e)
∩ I+M2(e)

)(x,y) = max(I+M1(e)
(x,y), I+M2(e)

(x,y)) i f e∈ A∩B














(F−
M1(e)

∩F−
M2(e)

)(x,y) = F−
M1(e)

(x,y) i f e∈ A\B

(F−
M1(e)

∩F−
M2(e)

)(x,y) = F−
M2(e)

(x,y) i f e∈ B\A

(F−
M1(e)

∩F−
M2(e)

)(x,y) = max(F−
M1(e)

(x,y),F−
M2(e)

(x,y)) i f e∈ A∩B














(F+
M1(e)

∩F+
M2(e)

)(x,y) = F+
M1(e)

(x,y) i f e∈ A\B

(F+
M1(e)

∩F+
M2(e)

)(x,y) = F+
M2(e)

(x,y) i f e∈ B\A

(F+
M1(e)

∩F+
M2(e)

)(x,y) = max(F+
M1(e)

(x,y),F+
M2(e)

(x,y)) i f e∈ A∩B

for all (x,y) ∈ E.

c© 2018 BISKA Bilisim Technology

www.ntmsci.com


95 Y. Celik and G. Kara: Combination of interval-valued neutrosophic soft sets and graph theory

Example 6.Let consider the Example 5. From Definition 11,G1∩G2 =(G∗,K,M,A∪B), whereA∪B= {e1,e2,e3}. Also
H(e1) = H1(e1), H(e2) = H1(e2)∩H2(e2), andH(e3) = H2(e3) are interval-valued neutrosophic graphs corresponding
to the parameterse1, e2 ande3. Hence, the intersection ofG1 andG2 corresponding to the parametere2 is interval-valued
neutrosophic soft graph as shown in Figure 8. The figures ofH(e1) andH(e2) can be drawn similarly.

H(e2) = H1(e2)∩H2(e2) = {v1|([0.2,0.3], [0.2,0.3], [0.3,0.5]),v2|([0.2,0.3], [0.2,0.3], [0.2,0.5]}.

v1

< [0.2,0.3], [0.2,0.3], [0.3,0.5]>

v2

< [0.2,0.3], [0.2,0.3], [0.2,0.5]>

H(e2)

Fig. 8: The intersection ofG1 andG2 corresponding to the parametere2

Theorem 3.If G1 and G2 are two interval-valued neutrosophic soft graphs, then so is G1∩G2.

Proof.By using Definition 12, it can be shown in a similar way to proofof Theorem 1.

4 Conclusion

Graph theory is an extremely useful mathematical tool to solve the complicated problems in different fields. The interval-
valued neutrosophic soft sets constitute a generalizationof interval-valued fuzzy soft set theory. The interval-valued
neutrosophic soft models give more sensitive, flexibility and conformity to the systems as compared to the interval-valued
fuzzy soft models. We applied the concept of interval-valued neutrosophic soft sets to graph structures and describe
method of their construction. We also defined cartesian product, union and intersection on interval-valued neutrosophic
soft graphs and gave some of their properties. We want to make, in near future, some algorithm and models using these
results.
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