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Abstract: In multiple regression analysis, the use of ridge regresssimator over the conventional ordinary least squargna®r

was suggested by Hoerl and Kennard in 1970 to beat the pratflemulticollinearity that may exist among the independeariables.
Keeping this in mind, in the present study, the authors bhtendevelop and compare different confidence intervals égrassion
coefficients based on ridge regression estimator usingstraptand jackknife methodology. For comparison, the @geprobabilities
and confidence widths are calculated through a simulatisdydor the data which suffers from the problem of multiaodiarity.
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1 Introduction

In regression analysis, ridge regression estimator (RRE)be of great use for the estimation of unknown regression
coefficients in presence of multicollinearity among theresgors (Hoerl and Kennard]). But apart from its ability to
create good parameter estimates with smaller mean squawedMSE) than the usual oridnary least squares estimator
(OLSE), it must also provide fine solutions when dealing witlore intricate inference problems like obtaining
confidence intervals. As the distribution of RRE is compiekmown when the errors are Gaussian, the use of RRE in
finding the confidence intervals for the regression paramaétenarred by the fact it may be associated with serious bias
and its distribution, specially for non normal errors, may be easily characterized. Recently, Firinguetti and Bldlza

[2] developed asymptotic confidence intervals for the redgpmassoefficients based on RRE and Edgeworth expansion.
Crivelli et. al.[3] proposed the use of a technique that combines the bootstichthe Edgeworth expansion to obtain an
approximation to the distribution of some ridge regressistimators and carried out some simulation experiments.

The most commonly used confidence intervals are approxintatédence intervals which are also known as standard
intervals (or normal theory intervals) having the follogigeneral form

6+72%6, (1)

where is an estimate of the unknown population paraméted is the standard error d, andz® is the 10@rth
percentile of a normal variate, (for exam@&9) = 1.645 etc.). The main drawback of standard intervals is they th
are based on an asymptotic approximation that may not beatecin practice. There has been considerable progress
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on developing better confidence intervals techniques foraving the standard interval, involving bias correctiamsl
parameter transformations. These methods produce apmtexconfidence intervals that have better coverage agcurac
than the standard one. Some references under this aredénEfaon f], Hall [5], DiCiccio and Tibshirani §]. The
confidence intervals based on the resampling methods likestsap and jackknife can be seen as automatic algorithms
for carrying out these improvements. The bootstrap andkjaitd are known as the two powerful resampling methods
for variance estimation for complex statistics even for normal errors which is why they could be used for producing
confidence intervals. Next section consists of the modeleitimators and the different forms of confidence intervals
based on bootstrap and jackknife methods.

2 The model, estimators & confidence intervals
Consider the following multiple linear regression model
y=XB+u (2

wherey is ann x 1 vector of observations on the variable to be explaited ann x p matrix of n observations omp
explanatory variables assumed to be of full column rghiks a p x 1 vector of regression coefficients associated with
them andu is ann x 1 vector of disturbances, the elements of which are assuoneeifi.d. with

E(u) = 0; Var(u) = d?l.

The OLSE forB8 in model @) is given by
BoLse = (X'X) X'y &)

that is well known to be thbest linear unbiased estimatdks stated earlier, OLSE may resultin large sampling vaean
in the presence of multicollinearity and therefore may pieelestimators which are not in tune with the researcheds pr
belief. To deal with this problem, Hoerl and Kennaddl proposed the ridge regression estimator by allowing soiag b
into the estimator which resulted in smaller MSE. The edimia given by

Brre= (X'X+KI) X'y = (I - kA™)Borsg, (4)
wherek > 0 andA = X’X +KklI.

Later, in order to reduce the problem of bias associated RRIE, Singhet al. [7] proposed an almost unbiased ridge
estimator using the Jackknife technique that was introdibgeQuenouille ] as a general method for reducing the bias
of an estimator. Later Tuke\d] proposed that this technique may also offer a simple metbazbtain the confidence
intervals for the parameters of interest. The estimatoemivy Singhet al. [7] is called the jackknifed ridge estimator
(JRE) and it is given by

Brre = [| — (KA Y)?]BoLse (5)

The application of the jackknife technique in this contegtsvalso investigated in Nyquist(], independently for bias
reduction, variance estimation and tracing of influentibkervations. For recent developments in jackknifed ridge
estimator, see Khurared. al.[11].
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Now for bootstrapping, firstly, for the model defined B),(we fit the least squares regression equation for full sampl

calculate the standardized residualsnd then draw an sized bootstrap sample with replacemejip(ﬁ(zb), .. .,Oﬁ,b))

from the residuals;"s giving 1/n probability to eachy;” After this, we obtain the bootstrapvalues using the resampled
residuals keeping the design matrix fixed as shown below

y® =X Borse+ ).

We then regress these bootstrappeedlues on the fixeX to obtain the bootstrap estimates of the regression caaffwi
So, the RRE from the first bootstrap sample is

ﬁ;RE(bl) = (X'X+kI) "X y(py).-

Repeating the above steBsimes, whereB is the number of bootstrap samples, the bootstrap RRB fegiven by

~ B A~
Brre= ZBQRE(br)/Ba (6)
r=
The estimated bias is given by

Biases:= fitre— BoLse
The estimated variance of RRE through bootstrap is given as
B =
Varest = Z(BQRE(br) —PBrre)”/(B-1). (7

r=

Now, based on these estimates, we construct the confideter@dls for the regression coefficiefitin following
subsection.

2.1 Confidence Intervals for Regression Coefficients usikRi§ R

There are several methods for constructing bootstrap emdilintervals based on the estimate of variance given)in (
are described briefly below.

2.1.1 Normal theory method

The first method for constructing bootstrap confidence watles based on the assumption that the sampling distributio
of BRREis normal. A 95% confidence interval fBrbased on RRE is

(2Brre— Bire) — Z1-a/2)vVValest < B < (2Brre— Biire) + 21 a2V Vales,

wherea = 0.05,Vareg is the bootstrap estimate of the variancefiﬁﬁE as defined inq) andz; 4/ is the(1—-a/2)
quantile of the standard normal distribution.
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2.1.2 Percentile method

Another method for the construction of bootstrap confidentervals is the bootstrap percentile method which is the
most popular among all primarily due to its simplicity andural appeal. In this method, we use the empirical quantiles
of ﬁ;REto form the confidence interval f@. A 95% confidence interval for 1000 bootstrap resamples is

Brrezs) < B < Brreors):

WhereBF’gRar) is thert" observation in the ordered bootstrap replicateégp{E.

2.1.3 Studentizetimethod

Another method for constructing the bootstrap confidensgvals is the studentized bootstrap, also called the trapts
method. The studentizadootstrap confidence interval takes the same form as theateonfidence interval except that
instead of using the quantiles from a normal distributibe,quantiles are calculated using the bootstrapjzistribution
(see Davison and HinkleyLP] and Efron and Tibshiranil[3]). Bootstrapping a statistical function of the fotra (BRRE—
B)/(SE), whereSE is the sample estimate of the standard erroﬁmE results in extra accuracy (see HalH]). The
bootstrap form of this is given by

t = (BI;RE_ BRRE)/(SE)*a

whereSE* is the standard error based on bootstrap distribution. Rethe 108" bootstrap percentile df by bs and
consider the statement thdi 025 < t < bg.g75) and after substituting= (BRRE— B)/SE, we get confidence limits fq8
as

Brre— (SE)bog7s < B < Brre— (SE)boozs

This interval is known as bootstrapased confidence interval f@ at 95% confidence level. The use of studentized
bootstrap is not suitable for some cases mostly where thpoéms of the intervals are too wide or the outliers are
present.

On the other hand, percentile bootstrap endpoints are sitoptalculate and can work well, especially if the sampling
distribution is symmetrical but it may not have the correstarage when the sampling distribution of the statistic is
skewed. Its coverage can be improved by adjusting the entipfiir bias. This method is known as Bias corrected
accelerated (BCa) method which we discuss in the next stibsec

2.1.4 BCa method

If we have a distribution which is skewed, few adjustmengsraquired. One method which is proved to be reliable in
such cases is BCa method, this method will tend to be closttrettrue confidence interval than the percentile method.
For a detailed review on the same, see EféjnHlall [5], Efron and Tibshirani13].
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The BCa procedure approximates confidence intervalg filom the percentiles of the bootstrap histograﬁmpg is an
estimate of8 based on the observed data mE is a bootstrap replication (ﬁRRE obtained by resampling. Lé(c)
be the cumulative distribution function of B bootstrap reglions ofﬁ,;RE,

é(c) = #{ﬁﬁRE <c}/B. (8)

The upper endpoinﬁRRE(BC@[a] of the one-sided confidence intervalatevel i.e.3 € (-%Bmasca[ﬂ) is defined in
terms ofG and two parametem, the bias correction aral the acceleration. The BCa endpoint is given by

29+ 29 )

A _ A1
Brresegla] =G ¢(ZO+—1a(zo+z(“>)

(9)

Here @ is the standard normal distribution function, witff) = ®~1(a). The central 90% BCa confidence interval is
given by (ﬁRRHBC@[O.OS],ﬁRRE(BC@[.95]). In (9), if a and zp are zero, therﬁRRE(BC@[a] = G Ya), the 10@th
percentile of the bootstrap replications. AlsoGfis normal, ther‘ﬁRRE(Bc@[a] = ﬁRREJr 79§, the standard interval
endpoint. In general9f makes three different corrections to the standard interiraproving their coverage accuracy.

The BCa algorithm estimates by

S { #{BezRng); < Brre) }

The acceleratioa is estimated as 0
D 1S L
6 (3,U?)%/2

For calculatingdJ;, we can use the following jackknife influence function (seektey [15]) in (10)

Ui = (n—1)(Brre— Brrai); (10)

WhereBRRE(i) is the estimate of based on the reduced data set by removing!thebservation from the data.

Another method known as the ABC (approximate bootstrap denfie intervals) method was proposed by Effgrthat
gives analytic adjustment to BCa method for smoothly defire@meters in exponential families. They are touted in the
literature as improvements for common parametric and revafpetric BCa procedures, and may be preferred in order to
avoid the BCa’s Monte Carlo calculations (see DiCiccio afebi[16]; Efron and Tibshirani13]; DiCiccio and Efron
[17]). The authors adopted this method in the linear model sétoywever did not notice any significant improvement in
its performance over the BCa method. Hence, this method babeen not pursued in the numerical investigations
carried out.

(© 2018 BISKA Bilisim Technology


www.ntmsci.com

82 BISK A Y. P Chaubey, M. Khuranaand S. Chandra: Confidence intebzaled on resampling methods using...

2.1.5 Jackknife method

Jackknife technique is generally used to reduce the bias@fnpeter estimates and to estimate the variance. A 95%
jackknife confidence interval g8 based on RRE is

ﬁJREt<1%;np)\/V_ii<B<BJRE+t<1%;np>\/V_iia (11)

wherea = 0.05,t(1— gin— p) is the upperg x 100% point of the Studentsdistribution with (n— p) degrees of
freedom andj; is theit" diagonal element of the following variance estimate of RRE.

n

— Bire)(Qi — Bire)’

VarJ(BRRE

whereQ;’s are the pseudo values defined as

Qi = Brre+N(1— W) (Brre— [gRRE(fi))
(12)

WhereﬁRRE(,i) is RRE calculated by deleting th® row from the data and, = x’A1x whereA is as defined earlier
andx is thei!" row of X matrix.

In order to compare these methods of constructing asyneptotifidence intervals based on RRE and OLSE, coverage
probabilities which is defined as the proportion that thefickemce interval includes the true parameter, under regeate
sampling from the same underlying population and confidevidéh which is the difference between the upper and
lower confidence endpoints have been calculated. In theseexibn, a simulation study to obtain the confidence widths
and coverage probabilities based on the confidence ingedeskeloped using RRE and OLSE has been carried out.

3 A simulation study

After getting into some theoretical aspects of each methambtstruct confidence intervals, the methods are applied on
simulated data and their performance is compared baseceaoterage probabilities and confidence widths. The model
is

y=XB+u (13)
whereu ~ N(0,1). Heref is taken as the normalized eigen vector corresponding ttathest eigen value of’X. The
explanatory variables are generated from the followingatiqn

Xij = (1— p2)2Wij + pWip, i =1,2.....m j=1,2,...,p.

wherew;; are independent standard normal pseudo-random numbeps isitthe correlation between the two explanatory
variablesforj, |’ < pandj # j’. Whenj or j’ = p, the correlation will bep. Two different values op are taken ap = 0.9
and Q99 to investigate the effects of different degrees of cebirity with sample sizeis = 25, 50 and 100. The feasible
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po?

value ofk is obtained by the optimal formula= g as given by Hoerét al.[18], so that
. 52
k=—P2
B(/JLSE OLSE
where

52 V- XBovse)' (Y — XBoLse)
n—p ’
For calculating different bootstrap confidence intervikis Normal, Percentile, Studentized and BCa, the functalied

‘boot.ci’ in R is used. The confidence limits through jacKkerére calculated usind.{). The coverage probabilities and
average confidence width using 1999 bootstrap resampleakndated and the experiment is repeated 1000 times. The
coverage probability, say CP is calculated using the falligWiormula

cp_ #B <NB<[§U)’

and the average confidence width, say CW is calculated by

i (Bu — B
CwW= =20

whereN is the simulation sizq@L andﬁu are lower and upper confidence interval endpoints respgtiVhe results for
coverage probability and average confidence width at 95%08#4 confidence levels with different valuesroéndp
are summarized in TableTable4. Note that in all the tables, column namely OLSE gives theecage probability and
confidence width based on the confidence intervals thr@@ggE usingt-distribution.

From Tablesl and2, it is found that the coverage probabilities of all the intds improve with the increasing value of
and become close to each other which is due to the consistériog estimators. It is evident from Tabl@sand4 that
the confidence intervals based on RRE have shorter widthteniparison to the width of the interval based on OLSE.

It is interesting to note that the coverage probabilitied eonfidence widths through OLSE and through jackknife are
very close to each other. Also, from Tabl@snd 4, it can be seen that with the increasing collinearity betwie
dependent variables, the difference between the confideidtl of interval based on OLSE and intervals based on RRE
is increasing. Also, with the increasing value of sample silze confidence width of all the intervals is decreasing.

According to Tablesl and 2, all the bootstrap methods are generally conservative ringecoverage probabilities,
however jackknife method seems to give coverage probiakilitloser to the target. In terms of confidence width,
resampling methods have smaller confidence width than th&EDjackknife method having larger confidence width
than bootstrap methods. In noting that bootstrap methasa@rservative with smaller confidence width, they seem to
have an advantage over the jackknife method.

4 Conclusion

In the present study, the use of different confidence intefvased on bootstrap and jackknife resampling methods is
illustrated. We computed the coverage probabilities antfidence width based on RRE using different bootstrap and
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jackknife methods based on a simulation study and compavethithat of OLSE which we computed usibgntervals.
The shorter confidence widths obtained through RRE showujtersority over OLSE in the case of multicollinearity.
Bootstrap methods produces intervals having shorter width that of intervals produced by jackknife. This shows tha
the bootstrap method has a slight edge over the jackknifeadet

Table 1: Coverage Probabilities through different methods at 95#fidence level

n p | OLSE | Normal | Percentile | Studentized | BCa | Jackknife
25 | 0.9 | 0.952 | 0.966 0.974 0.978 0.970| 0.940
0.964 | 0.966 0.960 0.976 0.964| 0.922

0.962 | 0.972 0.978 0.986 0.976| 0.944

0.99] 0.952 | 0.970 0.980 0.986 0.972| 0.940
0.964 | 0.964 0.964 0.984 0.966| 0.920

0.964 | 0.986 0.986 0.994 0.990| 0.936

50 | 0.9 | 0.950 | 0.974 0.972 0.980 0.970| 0.948
0.952 | 0.968 0.976 0.984 0.976| 0.936

0.948 | 0.988 0.986 0.990 0.990| 0.964

0.99] 0.950 | 0.984 0.984 0.986 0.984| 0.948
0.952 | 0.986 0.984 0.990 0.986| 0.934

0.948 | 0.994 0.994 0.996 0.994| 0.968

100| 0.9 | 0.958 | 0.972 0.974 0.978 0.974| 0.948
0.962 | 0.958 0.954 0.956 0.952| 0.930

0.940 | 0.966 0.968 0.968 0.964| 0.932

0.99] 0.958 | 0.984 0.984 0.984 0.984| 0.946
0.962 | 0.974 0.976 0.982 0.974| 0.928

0.944 | 0.978 0.978 0.980 0.978| 0.926

Table 2: Coverage Probabilities through different methods at 99%idence level

n p | OLSE | Normal | Percentile | Studentized | BCa | Jackknife
25 | 09 | 0.992 | 0.992 0.990 0.994 0.990| 0.984
0.990 | 0.990 0.988 0.994 0.992 0.982

0.996 | 1.000 0.998 1.000 0.996 0.994

0.99| 0.992 | 0.992 0.990 0.994 0.992 0.984
0.990 | 0.990 0.992 0.996 0.992 0.978

0.998 | 0.996 1.000 1.000 0.998 0.992

50 | 0.9 | 0.998 | 0.994 0.994 0.994 0.994| 0.988
0.990 | 0.994 0.996 0.998 0.996 0.990

0.992 | 0.994 0.996 0.996 0.994| 0.994

0.99| 0.998 | 0.994 0.994 0.994 0.994| 0.988
0.990 | 1.000 0.998 1.000 0.998 0.990

0.988 | 0.998 1.000 1.000 0.998 0.994

100| 0.9 | 0.988 | 0.992 0.992 0.992 0.992 0.988
0.990 | 0.988 0.986 0.990 0.988 0.982

0.994 | 0.990 0.988 0.994 0.986 0.976

0.99| 0.988 | 0.992 0.992 0.994 0.992 0.988
0.990 | 0.996 0.994 0.998 0.996 0.980

0.992 | 0.996 0.996 0.996 0.992 0.978
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Table 3: Average confidence width through different methods at 9586idence level using OLSE and RRE

n p OLSE Normal | Percentile | Studentized| BCa | Jackknife
25 | 0.9 | 2.101518| 1.1330 | 1.1346 1.2801 1.1361| 1.6494
1.998510| 1.1712 1.1732 1.3216 1.1738| 1.6516
2.144994 | 1.0454 | 1.0475 1.1809 1.0483| 1.5851
0.99| 6.493567| 2.3355 | 2.3407 2.6376 2.3437| 3.6672
6.175280 | 2.3954 | 2.4000 2.7049 2.4008| 3.6976
7.994216 | 2.2116 | 2.2146 2.5011 2.2178| 3.7170
50 | 0.9 | 1.407747| 0.9846 | 0.9864 1.0449 0.9868| 1.2858
1.258123| 0.9225| 0.9241 0.9793 0.9245| 1.1733
1.188554 | 0.8173 | 0.8185 0.8671 0.8191| 1.0739
0.99| 4.349856| 1.7202 | 1.7245 1.8256 1.7251] 2.6731
3.887527 | 1.7090 1.7124 1.8153 1.7128| 2.5918
4.654095| 1.5836 | 1.5854 1.6813 1.5869| 2.5555
100 | 0.9 | 0.9346568 0.7506 | 0.7518 0.7732 0.7518| 0.8923
0.8637652| 0.7042 | 0.7053 0.7244 0.7057| 0.8282
0.9818960| 0.7410 | 0.7423 0.7639 0.7430| 0.9207
0.99| 2.888035| 1.3929 | 1.3957 1.4355 1.3971| 1.9978
2.668984 | 1.3652 | 1.3669 1.4057 1.3687| 1.9255
3.754617 | 1.3487 | 1.3496 1.3918 1.3509| 2.1479

Table 4: Average confidence width through different methods at 9986idence level using OLSE and RRE

n p OLSE Normal | Percentile | Studentized| BCa | Jackknife
25 | 0.9 | 2.856330| 1.4890 1.4908 1.7480 1.4960| 2.2419
2.716325| 1.5392 1.5341 1.8025 1.5378| 2.2449
2915421 | 1.3739 1.3774 1.6143 1.3819| 2.1544
0.99| 8.825893| 3.0694 | 3.0764 3.6005 3.0870| 4.9844
8.393285| 3.1480 | 3.1353 3.6944 3.1443| 5.0257
10.865537| 2.9065 2.9123 3.4147 2.9281| 5.0521
50 | 0.9 | 1.878560| 1.2940 1.3010 1.4038 1.3030| 1.7159
1.678895| 1.2124 1.2190 1.3119 1.2195| 1.5658
1.586059 | 1.0741 1.0794 1.1616 1.0804| 1.4331
0.99 | 5.804641| 2.2607 2.2739 2.4573 2.2757| 3.5671
5.187688 | 2.2460 2.2573 2.4294 2.2602| 3.4586
6.210630 | 2.0813 2.0925 2.2534 2.0943| 3.4102

100| 0.9 | 1.237342| 0.987 0.991 1.029 0.991 1.181
1.143492| 0.925 0.931 0.962 0.933 1.096

1.299879| 0.974 0.979 1.017 0.979 1.219

0.99| 3.823313| 1.831 1.839 1.908 1.841 2.645
3.533324 | 1.794 1.803 1.867 1.810 2.549

4970534 | 1.772 1.782 1.853 1.782 2.844
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